scholarly journals Effects of in vitro plant ages on the subsequent growth of Plumbago indica l. after ex vitro transplantation

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Tran Tu Khoa ◽  
Pham Minh Duy ◽  
Tran Thi Huong ◽  
Nguyen Thi Quynh

The Indian leadwort (Plumbago indica L.) of the family Plumbaginaceae is a plant with high pharmaceutical value, as it contains plumbagin, a naphthoquinone with antibacterial, antifungal and anticancer properties. Among the propagation methods for the Indian leadwort, in vitro propagation is considered an effective method in producing disease-free transplants in a short period of time with high propagation rate. When plants grown in vitro are transferred to ex vitro condition, the environmental factors in the nursery house such as light, temperature, humidity and microorganism in the soil will affect their growth. Characteristics of transplants themselves is also critical for the subsequent growth. It is, thus, essential to establish the standards to evaluate and qualify in vitro plants for transplanting to ex vitro condition. Among these standards, the culture age of in vitro plants affects the maturations of their root, stem and leaves, which can in turn influence the acclimating ability and growth of in vitro plants after transplantation. The purpose of this study is to investigate the effects of the culture age of in vitro Indian leadwort plants on their performance during ex vitro stage. For this purpose, three different culture ages of uniform in vitro plants, 35, 42 and 49 day-old, were studied. After 28 days of cultivation in the nursery house under the light intensity of 70 ± 10 µmol m-2 s-1, temperature of 35 ± 4 oC and relative humidity (RH) of 60 ± 10%, all three treatments achieved 100% survival rate. Increased fresh and dry weights and percentage of dry matter after cultivation in ex vitro condition were not statistically different between 42 day-old and 49 day-old in vitro plants, but were significantly different between these plants and 35 day-old in vitro plants. The development of shoot and root in ex vitro stage of 42 day-old and 49 day-old in vitro plants was more balanced, as shown by the higher ratio of shoot/root dry weight, than 35 day-old in vitro plants. The results of this study showed that for this Plumbago species, bigger in vitro plants led to better growth during ex vitro stage. These results also indicated that it was possible to transfer in vitro Plumbago plants to ex vitro condition after 5 weeks of in vitro culture stage.  

1993 ◽  
Vol 73 (4) ◽  
pp. 1105-1113 ◽  
Author(s):  
Ribo Deng ◽  
Danielle J. Donnelly

Micropropagated shoots of red raspberry (Rubus idaeus L. ’Comet’) were rooted on modified Murashige-Skoog medium lacking sucrose, in specially constructed plexiglass chambers, under ambient (340 ± 20 ppm) or enriched (1500 ± 50 ppm) CO2 and ambient (ca. 100%) or reduced (90 ± 5%) relative humidity. Cultured plantlets were evaluated for their survival, rooting and relative vigor, leaf and root number, stem and root length, total leaf area, total fresh and dry weight, gas exchange rate, and stomatal features, prior to transplantation to soil and at intervals for 6 wk ex vitro. In vitro CO2 enrichment promoted plantlet growth, rooting and both the survival and early growth of transplants. CO2 enrichment increased stomatal aperture of plantlet leaves but did not apparently increase water stress at transplantation. Reduced in vitro RH did not affect plantlet growth but decreased stomatal apertures and stomatal index on leaves of cultured plantlets and promoted both the survival and early growth of transplants. In vitro CO2 and RH levels did not affect the photosynthetic rate of either plantlets or transplants. Only the stomata on leaves of plantlets from the ambient CO2 and reduced RH treatment were functional. Normal stomatal function was not observed in persistent leaves of transplants from the other treatments, even 2 wk after transplantation. In vitro CO2 enrichment acted synergistically with RH reduction in improving growth of plantlets both in vitro and ex vitro. Hardened red raspberry plantlets obtained through CO2 enrichment and RH reduction survived direct transfer to ambient greenhouse conditions without the necessity for specialized ex vitro acclimatization treatment. Key words: Acclimatization, growth analysis, photosynthesis, Rubus idaeus L., stomata, tissue culture


2016 ◽  
Vol 8 (9) ◽  
pp. 168
Author(s):  
Fatemeh Feizi ◽  
Mousa Mousavi

<p>The main propagation method of <em>Cassia fistula</em> is sowing seeds. The seed germination is usually low because of its impermeable hard coat. Therefore, this experiment evaluated the effects of TiO<sub>2</sub> nanoparticles and scarification methods on seed germination and seedling growth <em>in vitro</em> condition. The tree seeds were treated with, hot water, H<sub>2</sub>SO<sub>4</sub> (36N), and mechanical scarification and culture on ¼ MS salt mixture. The medium was supplemented with different concentrations of TiO<sub>2</sub> nanoparticles. The results showed that the highest percentage and rate of germination was recorded in seeds treated with mechanical scarification. The highest shoot and root dry weight was recorded for seeds treated with mechanical scarification and grown on MS media supplemented with 1.5 mg/ml TiO<sub>2</sub> nanoparticles. TiO<sub>2</sub> nanoparticles did not show any significant effects on the percentage and rate of germination. Different growing soil mixtures had significant effects on the growth of the ex vitro transferred plantlets. Coco peat and peat moss mixture (1:1) was found to be more effective in increasing the number of leaves and root length of the seedlings.</p>


HortScience ◽  
1993 ◽  
Vol 28 (6) ◽  
pp. 664-666 ◽  
Author(s):  
Dennis P. Stimart ◽  
James F. Harbage

The role of the number of adventitious roots of Malus domestics Borkh. `Gala' microcuttings in vitro on ex vitro root and shoot growth was investigated. Root initiation treatments consisted of IBA at 0, 0.15, 1.5, 15, and 150 μm in factorial combination with media at pH 5.5, 6.3, and 7.0. IBA concentrations significantly influenced final root count and shoot fresh and dry weights, but not plant height, leaf count, or root fresh and dry weights at 116 days. Between 0 and 0.15 μm IBA, final root counts were similar, but at 1.5, 15, and 150 μm IBA, root counts increased by 45%, 141%, and 159%, respectively, over the control. The pH levels did not affect observed characteristics significantly. There was no significant interaction between main effects. A significant positive linear relationship was found between initial and final root count. The results suggest a limited association between high initial adventitious root count and subsequent growth. Chemical name used: 1 H -indole-3-butyric acid (IBA).


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1352 ◽  
Author(s):  
Margarita Pérez-Jiménez ◽  
Olaya Pérez-Tornero

Salinity is one of the major abiotic stresses affecting crops worldwide, and breeders are urged to evaluate new genotypes to know their degree of tolerance to this selective agent. However, obtaining a number of plants high enough to make the evaluation can prove to be a long and laborious process which could be overcome by using tissue culture techniques. In the present study, the reliability of tissue culture evaluations is called into question through two parallel experiments, in vitro and ex vitro, using Citrus macrophylla and four mutants thereof, previously selected by their different behavior to salinity, as a plant material. Plants were subjected to salinity for 8 weeks in both in vitro (80 mM NaCl) and ex vitro (100 mM NaCl) experiments, and differences with plants grown in control conditions without salt were analyzed. After the experiments, length, leaf damage, shoot dry weight, chlorophylls and ions were measured in both conditions and experiments. As a result, it was demonstrated that tissue culture is a reliable tool to determine whether a genotype is tolerant to salinity or not, since plants of the same genotype responded in a similar way to salinity in both experiments. Henceforth, in vitro evaluations can be employed to test genotypes in a very early stage and using very little time and space. However, genotypes that showed the biggest or lowest changes when cultured in salinity were not always the same in both experiments. Thus, only ex vitro experiments can be performed if the goal is to compare genotypes and see which genotype is the most or least resistant to salinity.


2012 ◽  
Vol 7 (3) ◽  
pp. 507-518
Author(s):  
Gabriela Gómez-Serrano ◽  
Eliseo Cristiani-Urbina ◽  
Thelma Villegas-Garrido

AbstractPerezone, a sesquiterpenic benzoquinone with diverse medicinal properties, accumulates in the roots of Acourtia species. In this time-dependent study, the production of perezone was followed in A. cordata culture systems of plants kept in vitro or acclimated and grown in pots. Perezone was characterized by several analytical methods, using the crystallized compound isolated from roots of wild plants as standard. A procedure was developed for its selective quantification, which considers the specific bathochromic shift of the absorbance band in the visible region between the spectra of perezone in its non-ionic and ionic forms, with intensity directly proportional to concentration. In vitro, perezone was recovered from A. cordata roots in average amounts of 5.21 mg g−1 dry weight. Contrastingly, in plants under ex vitro conditions, perezone in roots increased logarithmically, rising from an average of 2.4 mg g−1 dry weight at the 12th week, to 43.6 mg g−1 dry weight at the 31st week, an amount comparable to wild plants. These findings show the feasibility of in vitro and ex vitro culture systems to propagate and conserve the germplasm of perezone-producing Acourtia plants, and a fast and reliable method for the quantification of this valuable compound.


2020 ◽  
Vol 26 ◽  
pp. 183-189
Author(s):  
L. R. Hrytsak ◽  
N. M. Drobyk

Aim. To analyze the experience of Ukrainian and foreign scientists on technologies to increase the adaptive potential of cultivated in vitro plants to ex vitro conditions. Results. Modern acclimatization technologies are mainly aimed at improving the methods of adaptation of planting material of in vitro collections to ex vitro conditions. Much less attention is paid to technologies to increase plant resilience at the stage of their multiplication and growth in vitro. Integration and systematization of research results of a large number of scientists is allowed to describe the main strategies and methodological techniques, which implementation can significantly increase the adaptive potential of in vitro plants. Conclusions. Optimization of physical and chemical conditions of plant cultivation in vitro can induce changes in their phenotype, intensity of photosynthetic reactions, water balance, which increases the adaptive potential of plants and facilitates the process of their acclimatization to ex vitro conditions. Key words: in vitro plants, acclimatization to ex vitro conditions, adaptive potential, technology.


2006 ◽  
Vol 41 (1) ◽  
pp. 165-169 ◽  
Author(s):  
Georgia Pacheco ◽  
Rachel Fátima Gagliardi ◽  
Mariana Buturini Cogliatti ◽  
Harlen Barreira Manhães ◽  
Leonardo Alves Carneiro ◽  
...  

The objective of this work was to evaluate the influence of substrate and preconditioning treatments on the acclimatization of in vitro plants of Arachis retusa. Plants were transferred to Plantmax or sand, and fertilized with Hoagland's nutrient solution. Plants maintained in sand, with or without fertilizer, showed the highest survival rates. In order to evaluate the influence of in vitro preconditioning treatments, stem segments were cultured on MS medium supplemented with different sucrose concentrations. The highest survival and developmental rates were observed in plants from two accessions cultured on MS supplemented with 1.5% and 3% sucrose. Flowering and fruit production were observed after five months.


2000 ◽  
Vol 10 (4) ◽  
pp. 754-757 ◽  
Author(s):  
J. Adelberg ◽  
M. Kroggel ◽  
J. Toler

Hosta ×hybrid Tratt. `Blue Cadet' and Hosta tokudama Tratt. `Newberry Gold' were micropropagated in shaken liquid culture and on agar media, in conventional vessels and vessels modified for ventilation in vitro. Acclimatization under intermittent mist and growth in an outdoor nursery during the late spring and summer were monitored by dry weight analysis of sample plants every 4 days for a 60-day period (ex vitro growth). Results for `Newberry Gold' were 1) in vitro shoot growth was greater in liquid than agar culture, regardless of vessel; 2) shoots from agar or liquid culture grew at similar rates ex vitro; 3) ex vitro root growth was greater for liquid than agar cultured plants, regardless of vessel type. Results for `Blue Cadet' were 1) in vitro and ex vitro shoot growth was greater in liquid than agar culture regardless of vessel type and 2) ex vitro root growth was greatest for liquid cultured plants from conventional vessels. Ventilated vessels were generally beneficial for agar but not liquid culture. Benefits of liquid culture for micropropagation of Hosta found in vitro are at least maintained and sometimes enhanced during ex vitro growth in the mist bed and nursery.


HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 447-453 ◽  
Author(s):  
Seong Min Woo ◽  
Hazel Y. Wetzstein

Georgia plume, Elliottia racemosa Muhlenb. ex. Elliott, is an extremely rare small tree or shrub endemic to Georgia, which is being severely affected by habitat loss and lack of sexual recruitment. In vitro plant regeneration of Georgia plume has not been previously reported and may be a method for the conservation and propagation of this threatened species. Studies evaluated the effects of sterilization methods, explant types, medium composition, and light environment on plant regeneration. An efficient plant regeneration system was developed in which adventitious shoot buds were induced using young, expanding leaf explants placed on an induction medium supplemented with 10 μm thidiazuron and 5 μm indole-3-acetic acid with Gamborg's B5 salts. Shoot elongation was promoted on a medium with 25 μm (2-isopentenyl) adenine incorporated into Woody Plant Medium. In vitro rooting studies evaluated continuous and pulse auxin treatments and ex vitro rooting trials after KIBA (indole-3-butric acid, potassium salt) dips. A 5-day pulse treatment on 100 or 150 μm indole-3-butyric acid produced ≈90% rooting of shoots with greater shoot and root dry weight than other pulse times. High rooting frequencies were obtained under in vitro and ex vitro conditions with over 85% survival of plantlets transferred to greenhouse conditions. The culture protocol was found to be effective with material collected from mature specimens in the wild from divergent populations. Tissue culture appears to be a promising approach for the propagation and conservation of this rare and threatened plant.


Sign in / Sign up

Export Citation Format

Share Document