Comparison of Cellular Response to Anorganic Bone Matrix/Cell Binding Peptide and Allogenic Cranial Bone After Sinus Augmentation in Rhesus Monkeys

2011 ◽  
Vol 37 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Ihab El-Madany ◽  
Hany Emam ◽  
Mohamed Sharawy

Abstract This study compared cellular responses of maxillary sinuses after augmentation with anorganic bovine-derived hydroxyapatite matrix linked to the cell binding polypeptide P-15 (ABM/P-15) or PepGen P-15 and allogenic freeze-dried cranial bone slabs. Five adult Macaque fascicularis monkeys were used. On one side, the floor of the sinus was augmented with ABM/P-15, while the other side was augmented with 2 cranial bone slabs. Trephine bone biopsies were obtained 6, 12, and 24 weeks postgrafting. Animals were sacrificed 8 months after grafting. Soft X-ray microradiography was used to determine bone density. The volume fraction (Vv) of regenerated bone, the number of mesenchymal cells, and the numbers of proliferating cell nuclear antigen (PCNA)- and alkaline phosphatase–positive cells at different augmentation sites were measured and compared. Basal bone heights were calculated at surgery and compared with total heights of the augmented sinus floors 8 months postgrafting. Bone formation, number of mesenchymal cells, PCNA index, and alkaline phosphatase index were significantly higher for the ABM/P-15 side than for the allogenic bone–augmented side. Both sides ended with a significant increase in bone height. The PCNA index decreased significantly over time (P < .05), while the alkaline phosphatase index increased significantly (P < .05) over time on both sides. Both graft materials have led to significant augmentation of the floor of the maxillary sinus with new bone; however, new bone formation and maturation were faster on the ABM/P-15 sites.

2021 ◽  
Vol 10 (8) ◽  
pp. e8610816498
Author(s):  
Giovanna Caroline Aparecida do Vale ◽  
Kelly Rossetti Fernandes ◽  
Julia Risso Parisi ◽  
Alan de França Santana ◽  
Matheus de Almeida Cruz ◽  
...  

The study comparing the bone regenerative capacity in an experimental model of cranial bone defects in rats, into 3 groups: G1: bone defects irradiated with photobiomodulation; G2: Biosilicate + photobiomodulation and G3: Biosilicate and Spongin + photobiomodulation. Histocompatibility and bone responses were performed after 15 and 45 days of implantation. Histological analysis demonstrated that photobiomodulation irradiated animals presented an increased amount of newly formed over time. Histomorphometry showed higher values for bone volume for G3 and G1, higher values for osteoid volume and number of osteoblasts observed for G3 compared to G2. TGF-β immunolabelling was higher for G2. The values found for VEGF were higher for biosilicate (with or without spongin) 15 days of implantation with an increased difference being observed for G1, 45 days after surgery. In conclusion, the stimulus provided by photobiomodulation associated to the biomimetic composite increased bone formation in the cranial bone defect in rats. Consequently, these data highlight the potential of the introduction of spongin into biosilicate and irradiated with photobiomodulation to improve the biological performance for bone regeneration applications.


1992 ◽  
Vol 1 (1) ◽  
pp. 23-32 ◽  
Author(s):  
James E. Dennis ◽  
Stephen E. Haynesworth ◽  
Randell G. Young ◽  
Arnold I. Caplan

Cultured-expanded rat marrow-derived mesenchymal cells differentiate into osteoblasts when combined with a porous calcium phosphate delivery vehicle and subsequently implanted in vivo. In this study, the effects of ceramic pretreatment with the cell-binding proteins fibronectin and laminin on the osteogenic expression of marrow-derived mesenchymal cells were assessed by scanning electron microscopy, [3H]-thymidine-labeled cell quantitation, and histological evaluation of bone formation. Scanning electron microscopic observations showed that marrow-derived mesenchymal cells rapidly spread and attach to both fibronectin- or laminin-adsorbed ceramic surfaces but retain a rounded morphology on untreated ceramic surfaces. Quantitation of [3H]-thymidine labeled cells demonstrated that laminin and fibronectin preadsorbed ceramics retain approximately double the number of marrow-derived mesenchymal cells than do untreated ceramics harvested 1 wk postimplantation. Histological observations indicate that the amount of time required to first detect osteogenesis was shortened significantly by pretreatment of the ceramic with either fibronectin or laminin. Fibronectin- and laminin-coated ceramic composite samples were observed to contain bone within 2 wk postimplantation, while in untreated ceramic the earliest observation of bone was at 4 wk postimplantation. A comparison was made of the initial cell-loading, in vivo cell retention characteristics, and rate of osteogenesis initiation of marrow-derived mesenchymal cells on two types of ceramic with different pore structure and chemical composition, with and without preadsorption with fibronectin or laminin. “Biphasic” ceramics contain randomly distributed pores 200-400 μm in diameter, and “coral-based” ceramics have continuous pores of approximately 200 μm in diameter. Laminin or fibronectin preadsorption significantly increases the number of cells retained in all ceramic test groups by day 7 postimplantation. In addition, by day 7 postimplantation, the biphasic ceramics retain a significantly greater number of cells for all test groups than do coral-based ceramics. The biphasic ceramics consistently have more specimens positive for bone with the identical cell-loading conditions used throughout this study. These results indicate that the retention of cells within the ceramic is an important factor for optimization of marrow mesenchymal cell initiated bone formation. The retention of cells within ceramics is augmented by the adsorption of the cell-binding proteins laminin and fibronectin, but this effect varies depending on ceramic pore structure and/or chemical composition.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2719-2719 ◽  
Author(s):  
Maurizio Zangari ◽  
Federica Cavallo ◽  
Larry Suva ◽  
Joshua Dilley ◽  
Guido Trico ◽  
...  

Abstract Bortezomib (B) has been shown to increase osteoblast activity and inhibit osteoclast formation, thus promoting bone formation. We have previously reported a correlation between increased alkaline phosphatase (ALP) and the response to B in patients with MM. We now report results of a detailed prospective study examining the skeletal effects of B treatment in MM patients using histomorphometry, micro computed tomography (microCT) and markers of bone metabolism. Methods: Single agent B (1.3 mg/m2 patients 1–10; 1mg/m2 patient 11–20), was administered on days 1, 4, 8 and 11 on a 21 day intervals for a total of 3 cycles; no patients were receiving concurrent bisphosphonates or steroids during the entire study period. The dynamic indices of bone turnover were prospectively evaluated via tetracycline labeling prior to transiliac bone biopsies obtained at baseline and after 3 cycles of treatment. Biopsy specimens were examined by high-resolution microCT prior to histomorphometric analyses. Architectural parameters such as bone volume/total volume (BVTV), trabecular number (TbN), and thickness (Tb.Th) were recorded. Osteocalcin, and alkaline phosphatase on days 1,4,8,11 were measured before and after each B dose and every 4 hours thereafter, daily for the other days of the treatment cycle. Results: Histomorphometric analyses were compared in 7 of the 11 patients who completed the trial. All 11 patients underwent bone biopsy at baseline nine of those 11 at the end of the study (2 samples were not adequate). Baseline BV/TV values ranged from 13% to 80%. After 3 cycles of B treatment % increase (mean 37%) in BV/TV was shown in 6 of 7 patients (P<0.034). Tb.Th was also increased from baseline (range 20%–456%) in 5 of 7 patients (71%) who responded to B. Histological bone histomorphometry demonstrated a lack of osteoid formation and osteoblast activity at baseline and a marked increased in osteoid and osteoblast numbers on trabecular and cortical bone surface following B treatment. Tetracycline incorporation into bone was observed in only 2 of 11 of patients (18%) at baseline, reflecting the extremely low levels of bone turnover in MM patients prior to treatment. However, post-B tetracycline labeling was observed in 7 of 11 (63%) samples (p<0.03; baseline vs post treatment score changes), reflecting the dramatic increases in bone turnover elicited by B treatment. Interestingly, after B treatment, the rate of bone formation was accelerated in the 2 patients with measurable baseline tetracycline labeling. Baseline osteocalcin values were below the reference intervals (11–50 ng/ml) in 10 of 11 patients but increased in 9 of 11 patients at the end of the third B cycle. Overall osteocalcin changes increased from baseline by 403% (p<0.037). BALP ranged from 4.5 to 48.4 ug/l at baseline and increased in 6 of 10 patients following B treatment. Conclusion: In this first prospective single agent B study we demonstrate that even a short course (3 cycles or 12 doses) of B treatment has a significant and potent anabolic bone effect in MM patients, demonstrated by serum turnover markers, micro-CT measures of bone architecture and by static and dynamic histomorphometry.


2008 ◽  
Vol 87 (9) ◽  
pp. 845-849 ◽  
Author(s):  
J.T. Koh ◽  
Z. Zhao ◽  
Z. Wang ◽  
I.S. Lewis ◽  
P.H. Krebsbach ◽  
...  

BMP2/7 heterodimer expression by adenovirus can stimulate bone formation at subcutaneous sites. In the present study, we evaluate whether this approach will also promote healing of cranial defects. Adenovirus expressing BMP2 or BMP7 (AdBMP2, AdBMP7) was titrated to yield equivalent BMP protein levels after transduction into murine BLK cells. Analysis of conditioned medium showed that BMP2/7 heterodimers have enhanced ability to stimulate alkaline phosphatase and Smad 1,5,8 phosphorylation relative to equivalent amounts of BMP2 or BMP7 homodimers. To measure bone regeneration, we implanted virally transduced BLK cells into critical-sized calvarial defects generated in C57BL6 mice. AdBMP2/7-transduced cells were more effective in healing cranial defects than were cells individually transduced with AdBMP2 or BMP7. Dramatic increases in bone volume fraction, as measured by microCT, as well as fusion of regenerated bone with the defect margins were noted. Thus, the use of gene therapy to express heterodimeric BMPs is a promising potential therapy for healing craniofacial bones.


Author(s):  
A. V. Sukhova ◽  
E. N. Kryuchkova

The influence of general and local vibration on bone remodeling processes is investigated. The interrelations between the long - term exposure of industrial vibration and indicators of bone mineral density (T-and Z-criteria), biochemical markers of bone formation (osteocalcin, alkaline phosphatase) and bone resorption (ionized calcium, calcium/creatinine) were established.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Britt Opdebeeck ◽  
José Millan Luis ◽  
Anthony Pinkerton ◽  
Anja Verhulst ◽  
Patrick D'Haese ◽  
...  

Abstract Background and Aims Vascular media calcification is frequently seen in elderly and patients with chronic kidney disease (CKD), diabetes and osteoporosis. Pyrophosphate is a well-known calcification inhibitor that binds to nascent hydroxyapatite crystals and prevents further incorporation of inorganic phosphate into these crystals. However, the enzyme tissue-nonspecific alkaline phosphatase (TNAP), which is highly expressed in calcified arteries, degrades extracellular pyrophosphate into phosphate ions, by which pyrophosphate loses its ability to block vascular calcification. Here, we aimed to evaluate whether a TNAP inhibitor is able to prevent the development of arterial calcification in a rat model of warfarin-induced vascular calcification. Method To induce vascular calcification, rats received a diet containing 0.30% warfarin and 0.15% vitamin K1 throughout the entire study and were subjected to the following daily treatments: (i) vehicle (n=10) or (ii) 10 mg/kg/day TNAP-inhibitor (n=10) administered via an intraperitoneal catheter from start of the study until sacrifice at week 7. Calcium, phosphorus and parathyroid hormone (PTH) levels were determined in serum samples as these are important determinants of vascular calcification. As TNAP is also expressed in the liver, serum alanine aminotransferase (ALT) and aspartate (AST) levels were analyzed. At sacrifice, vascular calcification was evaluated by measurement of the total calcium content in the arteries and quantification of the area % calcification on Von Kossa stained sections of the aorta. The mRNA expression of osteo/chondrogenic marker genes (runx2, TNAP, SOX9, collagen 1 and collagen 2) was analyzed in the aorta by qPCR to verify whether vascular smooth muscle cells underwent reprogramming towards bone-like cells. Bone histomorphometry was performed on the left tibia to measure static and dynamic bone parameters as TNAP also regulates physiological bone mineralization. Results No differences in serum calcium, phosphorus and PTH levels was observed between both study groups. Warfarin exposure resulted in distinct calcification in the aorta and peripheral arteries. Daily dosing with the TNAP inhibitor (10 mg/kg/day) for 7 weeks significantly reduced vascular calcification as indicated by a significant decrease in calcium content in the aorta (vehicle 3.84±0.64 mg calcium/g wet tissue vs TNAP inhibitor 0.70±0.23 mg calcium/g wet tissue) and peripheral arteries and a distinct reduction in area % calcification on Von Kossa stained aortic sections as compared to vehicle condition. The inhibitory effects of SBI-425 on vascular calcification were without altering serum liver markers ALT and AST levels. Furthermore, TNAP-inhibitor SBI-425 did not modulate the mRNA expression of osteo/chondrogenic marker genes runx2, TNAP, SOX9, collagen 1 and 2. Dosing with SBI-425 resulted in decreased bone formation rate and mineral apposition rate, and increased osteoid maturation time and this without significant changes in osteoclast- and eroded perimeter. Conclusion Dosing with TNAP inhibitor SBI-425 significantly reduced the calcification in the aorta and peripheral arteries of a rat model of warfarin-induced vascular calcification and this without affecting liver function. However, suppression of TNAP activity should be limited in order to maintain adequate physiological bone mineralization.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingyan Fu ◽  
Matthew Goldsmith ◽  
Sequoia D. Crooks ◽  
Sean F. Condon ◽  
Martin Morris ◽  
...  

AbstractAnimals in space exploration studies serve both as a model for human physiology and as a means to understand the physiological effects of microgravity. To quantify the microgravity-induced changes to bone health in animals, we systematically searched Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. We selected 40 papers focusing on the bone health of 95 rats, 61 mice, and 9 rhesus monkeys from 22 space missions. The percentage difference from ground control in rodents was –24.1% [Confidence interval: −43.4, −4.9] for trabecular bone volume fraction and –5.9% [−8.0, −3.8] for the cortical area. In primates, trabecular bone volume fraction was lower by –25.2% [−35.6, −14.7] in spaceflight animals compared to GC. Bone formation indices in rodent trabecular and cortical bone were significantly lower in microgravity. In contrast, osteoclast numbers were not affected in rats and were variably affected in mice. Thus, microgravity induces bone deficits in rodents and primates likely through the suppression of bone formation.


2017 ◽  
Vol 32 (4) ◽  
pp. 768-773 ◽  
Author(s):  
Zvi Artzi ◽  
Karen Anavi-Lev ◽  
Avital Kozlovsky ◽  
Liat Chaushu ◽  
Frank Schwarz ◽  
...  

MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


2021 ◽  
Vol 11 (9) ◽  
pp. 1774-1779
Author(s):  
Feng Sun ◽  
Tianwen Huang ◽  
Jianhui Shi ◽  
Tianli Wei ◽  
Haiwei Zhang

Osteoactivin (OA) plays a key role in osteogenic differentiation. miR-26b is elevated in the bone formation process of BMSCs, but whether it is involved in this process is unclear. Bone formation is regulated by FLT3/AXL signaling pathway, which may be a potential target of miR-26b. qRT-PCR detected miR-26b mRNA levels and bone formation-related genes or FLT3/AXL signaling pathway-related genes. Bone formation was analyzed by staining and FLT3/AXL signaling was evaluated along with analysis of miR-26b’s relation with LT3/AXL. miR-26b was significantly elevated in OA-induced bone formation of BMSCs, which can be promoted by miR-26b mimics. When miR-26b was overexpressed, FLT3/AXL signaling pathway was activated. miR-26b can ameliorate Dex-induced osteo-inhibition. miR-26b promotes bone formation of BMSCs by directly targeting FLT3/AXL signaling pathway, suggesting that miR-26b might be a target for inducing osteogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document