New Technologies to Combat Herbicide Resistance

2020 ◽  
Vol 31 (2) ◽  
pp. 90-92
Author(s):  
Rob Edwards

Herbicide resistance in problem weeds is now a major threat to global food production, being particularly widespread in wild grasses affecting cereal crops. In the UK, black-grass (Alopecurus myosuroides) holds the title of number one agronomic problem in winter wheat, with the loss of production associated with herbicide resistance now estimated to cost the farming sector at least £0.5 billion p.a. Black-grass presents us with many of the characteristic traits of a problem weed; being highly competitive, genetically diverse and obligately out-crossing, with a growth habit that matches winter wheat. With the UK’s limited arable crop rotations and the reliance on the repeated use of a very limited range of selective herbicides we have been continuously performing a classic Darwinian selection for resistance traits in weeds that possess great genetic diversity and plasticity in their growth habits. The result has been inevitable; the steady rise of herbicide resistance across the UK, which now affects over 2.1 million hectares of some of our best arable land. Once the resistance genie is out of the bottle, it has proven difficult to prevent its establishment and spread. With the selective herbicide option being no longer effective, the options are to revert to cultural control; changing rotations and cover crops, manual rogueing of weeds, deep ploughing and chemical mulching with total herbicides such as glyphosate. While new precision weeding technologies are being developed, their cost and scalability in arable farming remains unproven. As an agricultural scientist who has spent a working lifetime researching selective weed control, we seem to be giving up on a technology that has been a foundation stone of the green revolution. For me it begs the question, are we really unable to use modern chemical and biological technology to counter resistance? I would argue the answer to that question is most patently no; solutions are around the corner if we choose to develop them.

2013 ◽  
Vol 53 (11) ◽  
pp. 1143
Author(s):  
Ian J. Lean

Considerable progress has been made in reducing starvation during the past century. This was achieved through increased use of arable land and adoption of new technologies. Future increases in food production will depend to a greater extent than in the past on the adoption of new technologies and must be even more rapidly achieved than in the past to meet the increase in demand for food. Intensive industries such as the poultry industry are under pressure from those engaged with a naturalistic fallacy. Technologies such as antibiotics for chickens or hormonal growth promotants (HGPs) for beef cattle that are safe for people, reduce environmental impacts of production, increase profits for producers, and improve animal well-being will be needed to achieve these increases in food production. The precedent set in the EU in banning HGPs can be understood as a response to the illegal abuse of diethylstilboestrol in the EU and as a non-tariff trade barrier to reduce the importation of beef from more efficient producers. The banning of antibiotics in the EU reflects the unwise application of a ‘precautionary principle’ through which risks were not soundly assessed. However, the unilateral ban established by Coles Supermarkets Pty Ltd on HGPs in Australia represents a more dangerous development, in which marketing ploys have been accorded a higher value than the care of animals, the environment, or the profit made by producers. Decisions such as these have reduced the viability of animal production in the UK and pose a threat to sustainable agricultural production in Australia.


2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


1992 ◽  
Vol 2 (10) ◽  
pp. 287-304
Author(s):  
Ian Leigh

The broadcasting world is currently undergoing a revolution. The new technologies of cable and, more importantly, satellite broadcasting have brought within reach an enormous potential expansion and diversity in broadcasting. The Broadcasting Act 1990 is the government's response to the challenge, creating a mostly new regulatory framework. Alongside technological advance there has been a growing concern with regulating programme quality, as the creation of the Broadcasting Standards Commission (placed by Pt. V of the Act on a statutory footing) bears witness. A minor, but not insignificant, place in these cross-currents of ferment is occupied by religious broadcasting. This article seeks to place the controls and duties relating to religious broadcasting under the new regime within the context of its history in the UK and to consider the extent to which the new legal and administrative controls achieve an acceptable balance between religious expression and control of standards.


2009 ◽  
Vol 8 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Julie Davies ◽  
Christine Rawlings

AbstractIn the UK, radiotherapy research is being conducted at national and international levels which include multi-centre clinical trials. Local initiatives and trials are also ongoing where work is being performed to develop techniques or protocols for new technologies and service development. Active participation within these studies is now leading to a culture change with radiographers (radiation therapists) becoming an integral part of the research process. There are currently 70 radiographers in the UK participating in research. This accounts for 2.5% of the UK profession. With the extension of role diversification, research radiographers are undertaking many new roles; however, there is still scope for further development. The therapists’ role in working within this research environment is to ensure improved standards of care focussed on evidence-based practice.


Author(s):  
Anmol Arora ◽  
Andrew Wright ◽  
Mark Cheng ◽  
Zahra Khwaja ◽  
Matthew Seah

AbstractHealthcare as an industry is recognised as one of the most innovative. Despite heavy regulation, there is substantial scope for new technologies and care models to not only boost patient outcomes but to do so at reduced cost to healthcare systems and consumers. Promoting innovation within national health systems such as the National Health Service (NHS) in the United Kingdom (UK) has been set as a key target for health care professionals and policy makers. However, while the UK has a world-class biomedical research industry, several reports in the last twenty years have highlighted the difficulties faced by the NHS in encouraging and adopting innovations, with the journey from idea to implementation of health technology often taking years and being very expensive, with a high failure rate. This has led to the establishment of several innovation pathways within and around the NHS, to encourage the invention, development and implementation of cost-effective technologies that improve health care delivery. These pathways span local, regional and national health infrastructure. They operate at different stages of the innovation pipeline, with their scope and work defined by location, technology area or industry sector, based on the specific problem identified when they were set up. In this introductory review, we outline each of the major innovation pathways operating at local, regional and national levels across the NHS, including their history, governance, operating procedures and areas of expertise. The extent to which innovation pathways address current challenges faced by innovators is discussed, as well as areas for improvement and future study.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Rebecca Devine ◽  
Matthew I. Hutchings ◽  
Neil A. Holmes

Antimicrobial resistance (AMR) is a growing societal problem, and without new anti-infective drugs, the UK government-commissioned O'Neil report has predicted that infectious disease will claim the lives of an additional 10 million people a year worldwide by 2050. Almost all the antibiotics currently in clinical use are derived from the secondary metabolites of a group of filamentous soil bacteria called actinomycetes, most notably in the genus Streptomyces. Unfortunately, the discovery of these strains and their natural products (NPs) peaked in the 1950s and was then largely abandoned, partly due to the repeated rediscovery of known strains and compounds. Attention turned instead to rational target-based drug design, but this was largely unsuccessful and few new antibiotics have made it to clinic in the last 60 years. In the early 2000s, however, genome sequencing of the first Streptomyces species reinvigorated interest in NP discovery because it revealed the presence of numerous cryptic NP biosynthetic gene clusters that are not expressed in the laboratory. Here, we describe how the use of new technologies, including improved culture-dependent and -independent techniques, combined with searching underexplored environments, promises to identify a new generation of NP antibiotics from actinomycete bacteria.


2004 ◽  
Vol 21 (1) ◽  
pp. 105-115 ◽  
Author(s):  
J.M Whaley ◽  
E.J.M Kirby ◽  
J.H Spink ◽  
M.J Foulkes ◽  
D.L Sparkes

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 551-561 ◽  
Author(s):  
Javid Gherekhloo ◽  
Mostafa Oveisi ◽  
Eskandar Zand ◽  
Rafael De Prado

Continuous use of herbicides has triggered a phenomenon called herbicide resistance. Nowadays, herbicide resistance is a worldwide problem that threatens sustainable agriculture. A study of over a decade on herbicides in Iran has revealed that herbicide resistance has been occurring since 2004 in some weed species. Almost all the results of these studies have been published in national scientific journals and in conference proceedings on the subject. In the current review, studies on herbicide resistance in Iran were included to provide a perspective of developing weed resistance to herbicides for international scientists. More than 70% of arable land in Iran is given over to cultivation of wheat, barley, and rice; wheat alone covers nearly 52%. Within the past 40 years, 108 herbicides from different groups of modes of action have been registered in Iran, of which 28 are for the selective control of weeds in wheat and barley. Major resistance to ACCase-inhibiting herbicides has been shown in some weed species, such as winter wild oat, wild oat, littleseed canarygrass, hood canarygrass, and rigid ryegrass. With respect to the broad area of wheat crop production and continuous use of herbicides with the sole mechanism of action of ACCase inhibition, the provinces of West Azerbaijan, Tehran, Khorasan, Isfahan, Markazi, and Semnan are at risk of resistance development. In addition, because of continuous long-term use of tribenuron-methyl, resistance in broadleaf species is also being developed. Evidence has recently shown resistance of turnipweed and wild mustard populations to this herbicide. Stable monitoring of fields in doubtful areas and providing good education and training for technicians and farmers to practice integrated methods would help to prevent or delay the development of resistance to herbicides.


2016 ◽  
Author(s):  
Yingmin Chu ◽  
Yanjun Shen ◽  
Zaijian Yuan

Abstract. The North China Plain (NCP) is serious lack of fresh water resources, while crop production consumed about 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area because it is a typical region of groundwater overdraft in the NCP. In this study, water footprint (WF) was being used which was consisted of green, blue and grey components. The results showed: (1) the WF of the main crops production was about 51.0 km3 in 2012 and winter wheat, vegetables and summer maize were in the top three leading among the main crops in the HSP, while the water footprint intensity (WFI) of cotton was the largest and vegetables were the smallest; (2) winter wheat and vegetables consumed the main groundwater and their blue water footprint (WFblue) accounted for 66.0 % of the total WFblue in the HSP; (3) the crop structure scenarios analysis indicated that, with about 20 % of arable land cultivating winter wheat-summer maize in rotation, 40 % spring maize, 10 % vegetables and 10 % fruiters can promote the sustainable utilization of groundwater resources, at the same time can ensure sufficient supply of food, vegetables and fruits in the HSP.


Sign in / Sign up

Export Citation Format

Share Document