scholarly journals TENSÃO DE ÁGUA NO SOLO E DOSES DE NITROGÊNIO PARA A CULTURA DO FEIJOEIRO COMUM

Irriga ◽  
2009 ◽  
Vol 14 (4) ◽  
pp. 518-532 ◽  
Author(s):  
Marcio José de Santana ◽  
Amanda Letícia da Silveira ◽  
Carlos Roberto de Camargos ◽  
José Carlos Braga

TENSÃO DE ÁGUA NO SOLO E DOSES DE NITROGÊNIO PARA A CULTURA DO FEIJOEIRO COMUM   Márcio José de Santana1; Amanda Letícia da Silveira1; Carlos Roberto de Camargos2; José Carlos Braga21Instituto Federal de Educação, Ciência e Tecnologia, Triângulo Mineiro, Campus  Uberaba, Uberaba, MG, [email protected] Universitário de Patos de Minas, Faculdade de Ciências Agrárias, Patos de Minas, MG   1 RESUMO Este experimento foi conduzido no campus II do Centro Universitário de Patos de Minas, MG, com o objetivo de avaliar o rendimento do feijoeiro comum, submetido a diferentes tensões de água no solo e doses de nitrogênio. Os tratamentos constaram de quatro tensões de água no solo (10 kPa, 30 kPa, 50 kPa e 70 kPa) e quatro doses de nitrogênio (50 kgha-1, 100 kg ha-1, 150 kg ha-1 e 200 kg ha-1). O delineamento foi em blocos casualizados, em esquema fatorial de 4x4 com três repetições. Foram avaliados: produtividade, número de vagens por planta, número de grãos não colhidos, número de vagens verdes e a eficiência do uso da água. Dentre os resultados pode-se constatar que a maior produtividade física foi verificada quando a irrigação foi efetuada com tensão de 22 kPa e dose de N de 130,5 kg ha-1; a maior eficiência do uso da água foi verificada quando a irrigação foi reposta com a tensão de 37 kPa. UNITERMOS: irrigação, tensiometria, eficiência da água.  SANTANA, M.J. de; SILVEIRA, A.L. da; CAMARGOS, C.R. de; BRAGA, J.C. SOIL WATER TENSION AND NITROGEN LEVELS FOR THE COMMON BEAN PLANT  2 ABSTRACT             This experiment was conducted in the Campus II of the Centro Universitário de Patos de Minas, MG, with the objective of evaluating the yield of common bean plant, submitted to different soil water tension and nitrogen levels. The treatments consisted of four water tension in soil (10 kPa, 30 kPa, 50 kPa e 70 kPa) and four nitrogen (50 kg ha-1, 100 kg ha-1, 150 kg ha-1 e 200 kg ha-1). The experimental design was randomized blocks in factorial scheme of 4x4 with tree repetitions. Crop yield, number of pod per plant, number of unharvested grains, number of green pods and water efficiency cropping were evaluated.  Among the results the physical productivity was when the irrigation was effectuated by tension of 22 kPa and N of 130.5 kg ha-1; the greatest  value for water use efficiency was irrigation tension of 37 kPa. KEYWORDS: irrigation, tensiometry, efficiency of water.  

Water SA ◽  
2021 ◽  
Vol 47 (4 October) ◽  
Author(s):  
Lis Tavares Ordones Lemos ◽  
Fábio Ponciano de Deus ◽  
Valter Carvalho de Andrade Júnior ◽  
Michael Silveira Thebaldi ◽  
Marcio Mesquita ◽  
...  

Irrigated agriculture has become a concern, given the scarcity of freshwater. To reduce its water consumption, new techniques and technologies have been proposed. Based on this, the objective of this work was to evaluate the influence of different soil water tensions at initiation of irrigation with magnetically treated water, on ‘iceberg’ lettuce Lucy Brown (Lactuca Sativa L.) development and production. The experiment was conducted in a greenhouse, using a completely randomized factorial design, to evaluate two water types (magnetically treated water – MW and ordinary water – OW) and four soil water tensions at initiation of irrigation (T1 – 15 kPa, T2 – 25 kPa, T3 – 40 kPa and T4 – 70 kPa), with three replicates. Tensiometers were used to estimate soil water tension. The evaluated parameters were: aerial part fresh and dry total mass; commercial head fresh and dry mass, root fresh and dry mass; stem fresh and dry mass; stem length and diameter; percentage of leaves with tip burn, total and commercial yield; water use efficiency related to total and commercial yield; plant exposed area; and dry matter content. Despite achieving greater water use efficiency, the magnetic treatment may have hindered the removal of water from the soil by the crop, especially at increased soil water tension at initiation of irrigation.


2020 ◽  
Vol 33 (1) ◽  
pp. 172-183
Author(s):  
HELANE CRISTINA AGUIAR SANTOS ◽  
JOAQUIM ALVES DE LIMA JUNIOR ◽  
ANDRÉ LUIZ PEREIRA DA SILVA ◽  
GLEDSON LUIZ SALGADO DE CASTRO ◽  
RAFAELLE FAZZI GOMES

ABSTRACT Considering the lack of technical information on the water depth and nitrogen fertilization via fertigation in protected cultivation for bell pepper production in northern Brazil, this paper aimed to study the soil water tensions under different nitrogen doses for the cultivation of bell pepper in protected environment. The experiment was conducted in a greenhouse at the Igarapé-Açu School Farm of the Federal Rural University of the Amazon, at 1.0 x 0.50 m spacing, using the experimental design of randomized blocks in a 5x4 factorial scheme, with three replicates. The treatments consisted of five soil water tensions (15, 25, 35, 45 and 65 kPa) and four nitrogen doses (0, 135, 265 and 395 kg ha-1). There was interaction between soil water tension and nitrogen doses only for nitrogen use efficiency, and the best value was obtained with the combination between soil water tension of 15 kPa and nitrogen dose of 135 kg ha-1. Total number of fruits, fruit length and fruit diameter showed significant differences only as a function of soil water tensions. Production per plant, total yield and water use efficiency were statistically significant for soil water tensions and nitrogen doses. Therefore, for the conditions in which this study was carried out, it is recommended to apply a soil water tension of 15 kPa and nitrogen dose of 265 kg ha-1 for bell pepper cultivation in protected environment.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Misheck Musokwa ◽  
Paramu Mafongoya

Frequent droughts have threatened the crop yields and livelihoods of many smallholder farmers in South Africa. Pigeonpea can be grown by farmers to mitigate the impacts of droughts caused by climate change. An experiment was conducted at Fountainhill Farm from January 2016 to December 2017. The trial examined grain yield in addition to water use efficiency (WUE) of pigeonpea intercropped with maize versus sole pigeonpea and maize. A randomized complete block design, replicated three times, was used. Soil water tension was measured at 20, 50, and 120 cm within plots. The highest and lowest soil water tension was recorded at 20 m and 120 m respectively. Combined biomass and grain yield were significantly different: pigeonpea + maize (5513 kg ha−1) > pigeonpea (3368 kg ha−1) > maize (2425 kg ha−1). A similar trend was observed for WUE and land equivalent ratio (LER), where pigeonpea + maize outperformed all sole cropping systems. The inclusion of pigeonpea in a traditional mono-cropping system is recommended for smallholder farmers due to greater WUE, LER and other associated benefits such as food, feed and soil fertility amelioration, and it can reduce the effects of droughts induced by climate change.


Author(s):  
Adriano B. Pacheco ◽  
Tonny J. A. da Silva ◽  
Edna M. Bonfim-Silva ◽  
Hamilton A. W. Castro ◽  
Marcio Koetz

ABSTRACT The objective of this study was to evaluate the yield and water use of cherry tomatoes under soil water availability and potassium (K) doses in a greenhouse. The experiment was conducted in randomized blocks in a 52 fractional factorial design, corresponding to five levels of water availability and five K doses, with 13 combinations (4-0; 4-250; 4-500; 14-125; 14-375; 24-0; 24-250; 24-500; 34-125; 34-375; 44-0; 44-250; 44-500) (kPa-mg dm-3) and four replicates. A drip irrigation system with semi-automated irrigation control was used. The analyzed variables were shoot dry matter, number of fruits, yield, water consumption and water use efficiency. Highest cherry tomato yield occurs at soil water tension of 24 kPa and K dose of 290 mg dm-3. Soil water tension of 44 kPa and K dose of 290 mg dm-3 allow for higher water use efficiency in cherry tomato. Cherry tomato yield and water use are influenced by soil water availability and K doses in greenhouse.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498a-498
Author(s):  
Matthew W. Fidelibus ◽  
Chris A. Martin

Sugar and starch concentrations in leaves and roots of Citrus volkameriana Tan and Pasq were measured in response to irrigation frequency and AMF inoculum. Non-mycorrhizal seedlings were treated with a soil inoculum from one of five different communities of AMF; two AMF communities from Arizona citrus orchard soils, and three communities from undisturbed desert soils. Plants were assigned to frequent (soil water tension > –0.01 MPa) or infrequent (soil water tension > –0.06 MPa) irrigation cycles and were container-grown in a glasshouse for 4 months before tissues were analyzed. Fungal inoculum source did not affect shoot or root carbohydrate levels. Plants grown under high irrigation frequency had increased leaf and root starch levels and increased root sugar levels compared with those under low irrigation frequencies. High irrigation frequency also increased shoot mass.


1990 ◽  
Vol 115 (5) ◽  
pp. 712-714 ◽  
Author(s):  
Doyle A. Smittle ◽  
Melvin R. Hall ◽  
James R. Stansell

Sweetpotatoes [Ipomoea batatas (L.) Lam cv. Georgia Jet] were grown on two soil types in drainage lysimeters under controlled soil water regimes during 1982 and 1983. Water regimes consisted of irrigating the sweetpotatoes throughout growth when soil water tension at 23 cm exceeded 25, 50, or 100 kPa or by allowing a 100-kPa water stress before root enlargement, during early root enlargement, or throughout root enlargement. Water use and marketable yields were greater when sweetpotatoes were grown on a Tifton loamy sand (fine loamy, siliceous, thermic, Plinthitic Paleudult) than when grown on a Bonifay sand (loamy, siliceous, thermic, Grossarenic, Plinthitic Paleudult). Water use, marketable yield, and yield of U.S. #1 grade roots generally decreased when soil water tensions exceeded 25 kPa before irrigation, although soil water stress of 100 kPa during storage root development did not significantly affect yield. Regression equations are provided to describe the relationships of water use to plant age and to compute daily evapotranspiration: pan evaporation ratios (crop factors) for sweetpotatoes irrigated at 25, 50, and 100 kPa of soil water tension.


Nativa ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 415
Author(s):  
Morgana Scaramussa Gonçalves ◽  
Wilian Rodrigues Ribeiro ◽  
Edvaldo Fialho Dos Reis ◽  
Antônio Carlos Cóser

A irrigação é usada para conter os efeitos da sazonalidade de produção garantindo maior intensificação dos sistemas de produção a pasto, assim, contribuindo para o aumento da produção e do valor bromatológico das gramíneas. Dessa forma, objetivou-se com esse trabalho avaliar o valor bromatológico de gramíneas tropicais cultivadas em condições de ambiente protegido, submetidas a diferentes tensões de água no solo. Foram realizados três experimentos com as gramíneas Mombaça, Marandu e Tifton 85, onde cada qual, foi conduzida em um esquema de parcelas subdivididas, tendo nas parcelas os níveis do fator tensão de água no solo (20, 40, 50, 60 e 70 kPa) e nas subparcelas níveis 1º, 2º e 3º do fator corte, em um delineamento inteiramente casualizado com cinco repetições. Nas tensões de água no solo de 20 (Mombaça) e 50 kPa (Marandu e Tifton 85) as gramíneas expressaram seu máximo de valor nutritivo. Os maiores teores de PB foram obtidos nas gramíneas Mombaça e Tifton 85. Para as variáveis FDN e FDA o fator tensão de água no solo não foi significativo.Palavras-chave: proteína bruta, fibra, irrigação, forrageiras. BROMATOLOGY OF TROPICAL GRASSES UNDER DIFFERENT SOIL WATER TENSIONS IN PROTECTED ENVIRONMENT ABSTRACT:The irrigation is used to contain the effects of seasonality of production, ensuring a greater intensification of pasture production systems, thus contributing to the increase of production and the bromatological value of grasses. Thus, the objective of this work was to evaluate the nutritive value of tropical grasses grown under protected environment conditions, subject to different soil water stresses. Three experiments, using Mombasa, Marandu and Tifton 85 grasses under a protected environment were carried out and each one was conducted in a subdivided plots scheme, with the levels of soil water tension factor (20, 40, 50, 60 and 70 kPa) and in the subplots levels 1, 2 and 3 of the cut factor, in a completely randomized design with five replicationss. At soil water stresses of 20 (Mombasa) and 50 kPa (Marandu and Tifton 85) the grasses expressed their maximum nutritive value. The highest CP levels were obtained in the Mombasa and Tifton 85 grasses. For the NDF and ADF variables, the soil water stress factor was not significant.Keywords: crude protein, fiber, irrigation, forages.


Sign in / Sign up

Export Citation Format

Share Document