scholarly journals National Greenhouse Gas Emissions Inventory – Romania

Author(s):  
Marian PROOROCU ◽  
Sorin DEACONU ◽  
Mihaela SMARANDACHE

As a Party to the United Nations Framework Convention on Climate Change (UNFCCC), and its Kyoto Protocol, Romania is required to elaborate, regularly update and submit the national GHG Inventory. In compliance with the reporting requirements, Romania submitted in 2010 its ninth version of the National Inventory Report (NIR) covering the national inventories of GHG emissions/removals for the period 1989-2008. The inventories cover all sectors: Energy, Industrial Processes, Solvent and other product use, Agriculture, LULUCF and Waste. The direct GHGs included in the national inventory are: Carbon dioxide (CO2); Methane (CH4); Nitrous oxide (N2O); Hydrofluorocarbons (HFCs); Perfluorocarbons (PFCs); Sulphur hexafluoride (SF6). The emissions trend over the 1989-2008 period reflects the changes characterized by a process of transition to a market economy. With the entire economy in transition, some energy intensive industries reduced their activities and this is reflected in the GHG emissions reduction. Energy represents the most important sector in Romania, accounting for about 69% of the total national GHG emissions in 2008. The most significant anthropogenic greenhouse gas is the carbon dioxide. The decrease of CO2 emissions is caused by the decline of the amount of fossil fuels burnt in the energy sector, as a consequence of activity decline. According to the figures, there is a great probability for Romania to meet the Kyoto Protocol commitments on the limitation of the GHG emissions in the 2008-2012 commitment period.

Author(s):  
John Luiz ◽  
Eugene Muller

Carbon dioxide (CO2) emissions and its contribution to global warming has become an increasing concern to the international community. Although launched in 1997, the Kyoto Protocol only came into force in February 2005, with the goal to reduce greenhouse gas (GHG) emissions globally. This resulted in the establishment of a Clean Development Mechanism (CDM) which involves emissions in developing countries such as South Africa, giving them an opportunity to benefit financially when reducing GHG emissions voluntarily. The qualitative research approach used in this study gain inputs from experts in the CDM process in the South African environment so as to examine factors impacting on the viability of these projects. With the current outlook, this study suggests that there is a relatively high likelihood that the CDM would have the desired effect of reducing GHG emissions from existing South African industry and other developing countries given the incentive to do so.


Author(s):  
Joana Castro Pereira ◽  
Eduardo Viola

The signing of the United Nations Framework Convention on Climate Change (UNFCCC) by 154 nations at the Rio “Earth Summit” in 1992 marked the beginning of multilateral climate negotiations. Aiming for the “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system,” the Convention divided parties according to different commitments and established the common but differentiated responsibilities and respective capabilities (CBDRRC) principle. In 1997, parties to the Convention adopted the Kyoto Protocol, which entered into force in 2005. The Protocol set internationally binding emission reduction targets based on a rigid interpretation of the CBDRRC principle. Different perceptions on a fair distribution of climate change mitigation costs hindered multilateral efforts to tackle the problem. Climate change proved a “super wicked” challenge (intricately linked to security, development, trade, water, energy, food, land use, transportation, etc.) and this fact led to a lack of consensus on the distribution of rights and responsibilities among countries. Indeed, since 1992, greenhouse gas concentrations in the atmosphere have increased significantly and the Kyoto Protocol did not reverse the trend. In 2009, a new political framework, the Copenhagen Accord, was signed. Although parties recognized the need to limit global warming to < 2°C to prevent dangerous climate change, they did not agree on a clear path toward a legally-binding treaty to succeed the Kyoto Protocol, whose first commitment period would end in 2012. A consensus would only be reached in 2015, when a new, partially legally-binding treaty—the Paris Climate Agreement—committing all parties to limit global warming to “well below 2°C” was finally signed. It came into force in November 2016. Described in many political, public, and academic contexts as a diplomatic success, the agreement suffers, however, from several limitations to its effectiveness. The nationally determined contributions that parties have presented thus far under the agreement would limit warming to approximately 3°C by 2100, placing the Earth at a potentially catastrophic level of climate change. Forces that resist the profound transformations necessary to stabilize the Earth’s climate dominate climate change governance. Throughout almost three decades of international negotiations, global greenhouse gas (GHG) emissions have increased substantially and at a rapid pace, and climate change has worsened significantly.


2021 ◽  
Vol 896 (1) ◽  
pp. 012015
Author(s):  
MS A P Permata ◽  
I Buchori ◽  
R Kurniati

Abstract Green Open Space (GOS) is one of the efforts to deal with increasing greenhouse gas (GHG) emissions because it can absorb CO2 emissions. Transportation activities cause high CO2 emissions, and the lack of public green open space, which results in the ability of green open space to absorb emissions, is not optimal. The intensity of traffic activity is getting more and more crowded, which will impact the surrounding community. This study aims to determine the level of adequacy of public green open space (GOS) in absorbing carbon dioxide (CO2) emissions from transportation activities. This study uses a literature review approach. The results obtained are the adequacy of public green open space in absorbing emissions from transportation and so that solutions are obtained to carry out policies in reducing air pollution produced by vehicles, and the importance of green open spaces (GOS).


2005 ◽  
Vol 16 (3) ◽  
pp. 21-32 ◽  
Author(s):  
JN Blignaut ◽  
MR Chitiga-Mabugu ◽  
RM Mabugu

This paper discusses the procedures and results of constructing a greenhouse gas (GHG) emissions inventory for South Africa, using the official national energy balance for 1998. In doing so, the paper offers a snapshot of the South African energy supply and demand profile and encompassing greenhouse gas emissions profiles, disaggregated into 40 economic sectors, for the reference year. For convenience, energy supply and use are reported in both native units and terra joule (TJ), while emissions are expressed in carbon dioxide equivalents and reported in giga-gram (Gg). While carbon dioxide makes an overwhelming contribution to global anthropogenic GHG emissions, the inclusion of methane and nitrous oxide offers considerable richness to the analysis of climate change policies. Applying the energy balances, it was possible to compile a comprehensive emissions inventory using a consistent methodology across all sectors of the economy. The inventory allows the economic analyst to model various economic policies either with fuel as an input to production, or the consumption of fuel or the emissions generated during combustion, as a base of the analysis. The dominant role of coal as a source of energy, with a total primary energy supply (TPES) of 3.3 million TJ or 70 per cent of the total TPES, is clearly shown. Emissions from coal combustion (263 783 Gg of carbon dioxide equivalents or 74.7 per cent of total emissions) are henceforth the largest contributor to total emissions, estimated to be 352 932 Gg carbon dioxide equivalents.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Alim Galimullin ◽  
Kamil Bakhteev

The article provides an overview and analysis of the state of the problem of reducing greenhouse gas (GHG) emissions in Russia, considers the measures developed at the level of the country and individual corporations that issue GHG to combat climate change. Particular attention is paid to methods of carbon dioxide (CO2) compensation, including taking into account the absorbing capacity of forests. The experience of the largest Russian oil company "Tatneft" is described in the implementation of a project for the breeding and scaling of triploid aspen with an increased absorptive capacity for planting seedlings in forests in order to reduce and compensate for the carbon footprint.


2016 ◽  
Author(s):  
Rose M. Smith ◽  
Sujay S. Kaushal ◽  
Jake J. Beaulieu ◽  
Michael J. Pennino ◽  
Claire Welty

Abstract. Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), and watershed management can alter greenhouse gas (GHG) emissions from streams. GHG emissions from streams in agricultural watersheds have been investigated in numerous studies, but less is known about streams draining urban watersheds. We hypothesized that urban infrastructure significantly influences GHG dynamics along the urban watershed continuum, extending from engineered headwater flowpaths to larger streams. GHG concentrations and emissions were measured across streams draining a gradient of stormwater and sanitary infrastructure including: (1) complete stream burial, (2) in-line stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. Infrastructure categories significantly influenced drivers of GHG dynamics including carbon to nitrogen stoichiometry, dissolved oxygen, total dissolved nitrogen (TDN), and water temperature. These variables explained much of the statistical variation in nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) saturation in stream water (r2 = 0.78, 0.78, 0.50 respectively). N2O saturation ratios in urban streams were among the highest reported for flowing waters, ranging from 1.1–47 across all sites and dates. The highest N2O saturation ratios were measured in streams draining nonpoint N sources from septic systems and were strongly correlated with TDN. CO2 was highly correlated with N2O across all sites and dates (r2 = 0.84), and CO2 saturation ratio ranged from 1.1–73. CH4 was always super-saturated with saturation values ranging from 3.0 to 2157. Differences in stormwater and sewer infrastructure influenced water quality, with significant implications for enhancing or minimizing stream CO2, CH4, and N2O emissions.


2021 ◽  
Author(s):  
Wenzhang Li ◽  
Keke Wang ◽  
yanfang Ma ◽  
Yang Liu ◽  
Weixin Qiu ◽  
...  

The ever-growing factitious over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2017 ◽  
Vol 30 (1) ◽  
pp. 191-214 ◽  
Author(s):  
Meryl Jagarnath ◽  
Tirusha Thambiran

Because current emissions accounting approaches focus on an entire city, cities are often considered to be large emitters of greenhouse gas (GHG) emissions, with no attention to the variation within them. This makes it more difficult to identify climate change mitigation strategies that can simultaneously reduce emissions and address place-specific development challenges. In response to this gap, a bottom-up emissions inventory study was undertaken to identify high emission zones and development goals for the Durban metropolitan area (eThekwini Municipality). The study is the first attempt at creating a spatially disaggregated emissions inventory for key sectors in Durban. The results indicate that particular groups and economic activities are responsible for more emissions, and socio-spatial development and emission inequalities are found both within the city and within the high emission zone. This is valuable information for the municipality in tailoring mitigation efforts to reduce emissions and address development gaps for low-carbon spatial planning whilst contributing to objectives for social justice.


Sign in / Sign up

Export Citation Format

Share Document