scholarly journals Functional Aspects of Soil Biodiversity in Mineral and Organic Fertilized Soils

Author(s):  
Mignon SANDOR ◽  
Aurel MAXIM

Soil biodiversity make essential contribution to soil fertility and health, being considered as an important forces for the achievement of sustainability in agroecosystems (Sandor, 2008). Conventional agricultural practices could negatively affect soil biodiversity by damaging habitats and disrupting their functions. New management strategies have to be adopted in order to conserve and restore soil biological functions (Anderson and Weigel, 2003).

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 456 ◽  
Author(s):  
Adriano Sofo ◽  
Alba Nicoletta Mininni ◽  
Patrizia Ricciuti

Soils and crops in orchard agrosystems are particularly vulnerable to climate change and environmental stresses. In many orchard soils, soil biodiversity and the ecosystem services it provides are under threat from a range of natural and manmade drivers. In this scenario, sustainable soil use aimed at increasing soil organic matter (SOM) and SOM-related benefits, in terms of soil quality and fertility, plays a crucial role. The role of soil macrofaunal organisms as colonizers, comminutors and engineers within soils, together with their interactions with microorganisms, can contribute to the long-term sustainability of orchard soils. Indeed, the continuous physical and chemical action of soil fauna significantly affects SOM levels. This review paper is focused on the most advanced and updated research on this argument. The analysis of the literature highlighted that a significant part of soil quality and fertility in sustainably-managed fruit orchard agrosystems is due to the action of soil macrofauna, together with its interaction with decomposing microorganisms. From the general analysis of the data obtained, it emerged that the role of soil macrofauna in orchards agrosystems should be seriously taken into account in land management strategies, focusing not exclusively on fruit yield and quality, but also on soil fertility restoration.


2020 ◽  
Vol 12 (22) ◽  
pp. 9398 ◽  
Author(s):  
Ugo De Corato

The major issues related to indiscriminate land use are overall related to topsoil depletion, groundwater contamination, plant disease outbreaks, air pollution and greenhouse gas emissions. Currently, global vision focused on the environmental impact and use of eco-friendly strategies are increasing. The design of new agroecosystems and food systems are fundamental to make more sustainability in soil management systems by improving the release of advanced ecosystems services for farmers. Sustainable agriculture utilizes natural renewable resources in the best way due to their intrinsic features by minimizing harmful impact on the agroecosystems. Farmers should sustain or even increase the soil organic matter (SOM) content overall in depleted, semiarid and arid soils. Nutrients recycled from agro-waste into the soil using residual biomass sources should be endorsed by diversified agriculture and governmental policies in which livestock and crop production are spatially integrated. Many good agricultural practices that growers may use to promote soil quality and soil health by minimizing water use and soil pollution on farms are yet available from past years. Exploration of the natural soil biodiversity and manipulation of soil microbiota by continuous amendment with compost, biochar and digestate represents a pre-requisite to develop more efficient microbial consortia useful for soils and crops. On the other hand, more attention is proven regarding the sustainable use of useful microorganisms employed as pure inoculants in rhizosphere. Among them, plant growth-promoting rhizobacteria and biological control agents cover the major groups of tailored inoculants in order to rationalize the internal recycling of nutrients and their energy recovery, or to improve the soil quality and plant health thanks to their diversified mechanisms of action and complex interactions between SOM, microbiota and plant roots in the rhizosphere.


Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 32
Author(s):  
Haddish Melakeberhan ◽  
Gregory Bonito ◽  
Alexandra N. Kravchenko

Soil health connotes the balance of biological, physicochemical, nutritional, structural, and water-holding components necessary to sustain plant productivity. Despite a substantial knowledge base, achieving sustainable soil health remains a goal because it is difficult to simultaneously: (i) improve soil structure, physicochemistry, water-holding capacity, and nutrient cycling; (ii) suppress pests and diseases while increasing beneficial organisms; and (iii) improve biological functioning leading to improved biomass/crop yield. The objectives of this review are (a) to identify agricultural practices (APs) driving soil health degradations and barriers to developing sustainable soil health, and (b) to describe how the nematode community analyses-based soil food web (SFW) and fertilizer use efficiency (FUE) data visualization models can be used towards developing sustainable soil health. The SFW model considers changes in beneficial nematode population dynamics relative to food and reproduction (enrichment index, EI; y-axis) and resistance to disturbance (structure index, SI; x-axis) in order to identify best-to-worst case scenarios for nutrient cycling and agroecosystem suitability of AP-driven outcomes. The FUE model visualizes associations between beneficial and plant-parasitic nematodes (x-axis) and ecosystem services (e.g., yield or nutrients, y-axis). The x-y relationship identifies best-to-worst case scenarios of the outcomes for sustainability. Both models can serve as platforms towards developing integrated and sustainable soil health management strategies on a location-specific or a one-size-fits-all basis. Future improvements for increased implementation of these models are discussed.


2014 ◽  
Vol 62 (4) ◽  
pp. 1495 ◽  
Author(s):  
Eddy Pérez L. ◽  
Luis F. Pacheco

<p>Wildlife is often blamed for causing damage to human activities, including agricultural practices and the result may be a conflict between human interests and species conservation. A formal assessment of the magnitude of damage is necessary to adequately conduct management practices and an assessment of the efficiency of different management practices, is necessary to enable managers to mitigate the conflict with rural people. This study was carried out to evaluate the effectiveness of agricultural management practices and controlled hunting in reducing damage to subsistence annual crops at the Cotapata National Park and Natural Area of Integrated Management. The design included seven fields with modified agricultural practices, four fields subjected to control hunting, and five fields held as controls. We registered cultivar type, density, frequency of visiting species to the field, crops lost to wildlife, species responsible for damage, and crop biomass. Most frequent species in the fields were <em>Dasyprocta punctata</em> and <em>Dasypus novemcinctus</em>. Hunted plots were visited 1.6 times more frequently than agriculturally managed plots. Crop lost to wildlife averaged 7.28% at agriculturally managed plots, 4.59% in plots subjected to hunting, and 27.61% in control plots. Species mainly responsible for damage were <em>Pecari tajacu</em>, <em>D. punctata, </em>and <em>Sapajus apella</em>. We concluded that both management strategies were effective to reduce damage by &gt;50% as compared to unmanaged crop plots.</p><p><strong> </strong></p>


Author(s):  
Chinedu Egbunike ◽  
Nonso Okoye ◽  
Okoroji-Nma Okechukwu

Climate change is a major threat to agricultural food production globally and locally. It poses both direct and indirect effects on soil functions. Thus, agricultural management practices has evolved to adaptation strategies in order to mitigate the risks and threats from climate change. The study concludes with a recommendation the coconut farmers should explore the idea of soil biodiversity in a bid to mitigate the potential negative impact of climate related risk on the farming. The study proffers the need for adopting sustainable agricultural practices to boost local coconut production. This can contribute to the simultaneous realisation of two of the Sustainable Development Goals (SDGs) of the United Nations: SDG 2 on food security and sustainable agriculture and SDG 13 on action to combat climate change and its impacts. The study findings has implications for tackling climate change in Sub-Saharan Africa and in particular Nigeria in order to boost local agricultural production and coconut in particular without negative environmental consequences and an ability to cope with climate change related risks.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7650 ◽  
Author(s):  
Xian Gu ◽  
Yu Cen ◽  
Liyue Guo ◽  
Caihong Li ◽  
Han Yuan ◽  
...  

The long-term use of herbicides to remove weeds in fallow croplands can impair soil biodiversity, affect the quality of agricultural products, and threaten human health. Consequently, the identification of methods that can effectively limit the weed seed bank and maintain fallow soil fertility without causing soil pollution for the next planting is a critical task. In this study, four weeding treatments were established based on different degrees of disturbance to the topsoil: natural fallow (N), physical clearance (C), deep tillage (D), and sprayed herbicide (H). The changes in the soil weed seed banks, soil nutrients, and soil microbial biomass were carefully investigated. During the fallow period, the C treatment decreased the annual and biennial weed seed bank by 34% against pretreatment, whereas the H treatment did not effectively reduce the weed seed bank. The D treatment had positive effects on the soil fertility, increasing the available nitrogen 108% over that found in the N soil. In addition, a pre-winter deep tillage interfered with the rhizome propagation of perennial weeds. The total biomass of soil bacterial, fungal, and actinomycete in H treatment was the lowest among the four treatments. The biomass of arbuscular mycorrhizal fungi in the N treatment was respectively 42%, 35%, and 91%, higher than that in the C, D, and H treatments. An ecological weeding strategy was proposed based on our findings, which called for exhausting seed banks, blocking seed transmission, and taking advantage of natural opportunities to prevent weed growth for fallow lands. This study could provide a theoretical basis for weed management in fallow fields and organic farming systems.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Sahrish Khan ◽  
Abdul Waris

Due to increase in the population which is estimated that the human papulation will increased 9.7 billion in 2050. There is also increase the demands of the food productions. That’s why there is need to solve the problems regarding to the production of the food. Major problem of the food production is the shortage of the land due to the low and bad soil structure and quality of the soil. Soil erosion is one of the main issue which is caused  due to the used of different chemicals, pesticides and fertilizers which are mainly used for the  plant growth and protection but they are the main reasons of the production of the pollution in the soil. There is need of the different new technology for the improvement of the soil structure, quality, its fertility and decontamination of pollution from the soil which are eco-friendly to the environment and have no adverse effect. In this study the role of the different techniques in which genetic engineering, Nano technologies, soil and crop management strategies, integrated pest control management strategies, sustainable remediation techniques, microbial management strategies and the different management stairgates. All these techniques aim to the production of the plants and microbes which are effective against plant disease management. The aim of the use nano agrochemicals and nano sensors for sensing environmental and pathogen conditions against disease management. The aim of the paper to provide the production of the disease resistance plant and the provide balanced nutrients supplements to the soil for the improvement of the soil condition and its fertility. These techniques have economic importance due to the use of the nano agrochemicals which are low cost and have effective and reduce the use of the chemicals substances which have negative effect on the  soil fertility.. There are sustainable remediations techniques also discussed which are used for the decontamination of the soil pollution. In this study the main focus on the improve and increase soil fertility which enhance the growth of the plants as well the production of the crop production. The production of the stress and degradation resistance microbes which is important factor for the protection of the soil from degradation or contamination. All the techniques which are used in this paper have no adverse effect they are helpful in the tolerance of the stress conditions.


2019 ◽  
Vol 13 (1) ◽  
pp. 57-67
Author(s):  
Monica Dumitrașcu ◽  
Mihaela Lungu ◽  
Sorin Liviu Ștefănescu ◽  
Victoria Mocanu ◽  
Gabi Mirela Matei ◽  
...  

Abstract As low-input environmentally friendly agricultural practices are currently associated with the delivery of a wide range of public goods and socioeconomic benefits, the strategy of European Union in mitigating climate change effects, protecting environment and ensuring public health has, among others, focused around preserving the High Natural Value (HNV) areas. About a quarter of the land in Romania is potentially covered by HNV farming and eligible for associated support payments, mostly along the chain of the Carpathian Mountains. Since soil systematic data on HNV area are scarce, recent research developments currently undertake to build up a first national HNV soil data base. Soil fertility state in a HNV payment eligible area of south-eastern Transylvania was studied in seven in-depth dug profiles and seven additional shallow dug profiles. Soil samples were taken by genetic horizons as well as agrochemical samples from the upper soil layers (0-20 cm). Physical, chemical, and microbiological analyses revealed that the studied soils have a medium clayey loamy texture, good fertility and are subject to an adequate HNV management in the area, as the analytical values mostly range in favorable intervals for plant growth and nutrition. Thus, soil reaction is moderately acid up to slightly alkaline in the presence of carbonates, the soil organic matter, generally well mineralized, reaches fair levels and the high and very high cation exchange capacity ensure good conditions for plants growth and nutrition whilst nitrogen and potassium supply is adequate. Phosphorus is the only element in short supply – a situation often encountered in Romania unfertilized soils. Soil bulk density and total porosity are also favorable for root growth and spreading and plant nutrition. Microorganisms’ activity is diverse and is also adequate for plant nutrition.


2021 ◽  
Author(s):  
Gemma Carr ◽  
Marlies Barendrecht ◽  
Liza Debevec ◽  
Bedru Balana

&lt;p&gt;The variety of demands that people place on water resources, coupled with the dynamics of the natural system, make water resource management highly complex. Models that can integrate aspects of society such as institutions, perceptions and behaviors along with aspects of the natural system such as rainfall, runoff and water quality could offer a realistic approach to better understand and manage these complex systems. Much research progress in the development of such socio-hydrological models has been achieved in recent years. However, many gaps exist on how the decisions and actions of institutions and agencies, and their subsequent impacts on individuals, can be integrated within such models. In this study, a socio-hydrological model was developed using a set of empirical field data from the Black Volta (Mouhoun) watershed in south west Burkina Faso. Cultivation of the riparian zones and use of agrochemicals are commonly associated with increased sedimentation in the river and water pollution, respectively. The model aims to capture the relationships between agency support for water quality management, the capacity of local organizations to support farmers and land users, land use changes in the riparian zones, improved agricultural practices employed by farmers (e.g., reduced tillage, organic farming, or cultivating tree crops rather than vegetables), and suspended sediment concentration in the river as an indicator of water quality. The model is set up to reflect the current situation and scenarios are generated depicting plausible pathways to achieve improved water quality through riparian land management strategies. Comparison of the modelled scenarios shows that water quality could be improved if institutional support and public resource allocation for water management is raised, and the capacity of local level organizations is substantially increased compared to current levels. Semi-quantitative socio-hydrological models, such as the one developed in this study, may provide insights for the comparison and prioritization of different management strategies and guide interventions or support mechanisms that enable riparian land users to change their agricultural practices and lead to water quality improvements.&lt;/p&gt;


Author(s):  
Nicola P. Randall ◽  
Barbara Smith

This chapter gives a basic introduction to soil formation and fundamental soil processes in agroecosystems. The types of soils found in agroecosystems and their importance for agriculture is explored, with a principal focus on soil biodiversity, i.e. soil-dwelling organisms, their variety and function, and the interaction between soil biology, agriculture, and food production. The chapter describes some of the issues associated with soils in agroecosystems. These include interactions between agricultural practices and soil erosion and soil quality issues such as salinization and desertification. The major challenges to maintaining ‘healthy’ soils on productive land are outlined, and approaches and techniques for managing soils described.


Sign in / Sign up

Export Citation Format

Share Document