scholarly journals Feasibility Study on Reducing Lead and Cadmium Absorption by Alfalfa (Medicago scutellata L.) in a Contaminated Soil Using Nano-Activated Carbon and Natural Based Nano-Zeolite

2019 ◽  
Vol 47 (4) ◽  
pp. 1185-1193 ◽  
Author(s):  
Tahereh HASANABADI ◽  
Shahram LACK ◽  
Adel MODHEJ ◽  
Hossien GHAFOURIAN ◽  
Mojtaba ALAVIFAZEL ◽  
...  

The first risk posed by heavy metal pollution in an ecosystem is metal accumulation in the biomass of growing plants, which has harmful effects on human health. Natural-based nanoparticles are efficient in remediating environmental pollutants because they have a high surface/volume ratio, high chemical activity and produce no harmful side-products. The present study investigates the capacity of natural-based nano-porous adsorbents for reducing the availability of heavy metals to annual alfalfa (Medicago scutellata L.) roots and keeps them in soil. In a factorial experiment based on a randomized design (with four replications), three nano-adsorbents (nano-activated carbon, natural nano-zeolite and modified nano-zeolite) and two heavy metals (lead and cadmium) have been tested. The results demonstrated that applying the highest rate of activated carbon and modified nano-zeolite reduced shoot Pb content by 34% and 33.2%, and shoot Cd content by 35.5% and 46.7%, respectively, compared with the adsorbent-free control.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********

2015 ◽  
Vol 2 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Man Li ◽  
Chengwei Wang ◽  
Michael J. O'Connell ◽  
Candace K. Chan

Carbon nanospheres prepared using a facile spray pyrolysis method display good adsorption to arsenate and selenate compared to commercial activated carbon, due to the presence of basic surface groups, high surface-to-volume ratio, and suitable microporous structure.


2017 ◽  
Vol 19 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Shirley Palisoc ◽  
Michelle Natividad ◽  
Diana Mae Mae Calde ◽  
Elias Rafael Rosopa

Graphene/[Ru(NH3)6]3+/nafion modified glassy carbon electrodes were fabricated using the drop coating technique. The fab-ricated electrodes were characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). Simultaneous detection of lead (Pb2+) and cadmium (Cd2+) was done via anodic stripping voltammetry (ASV). The effects of varying the amounts of graphene and [Ru(NH3)6]3+ on the transport and sensing properties of the modified electrodes were determined. SEM results showed that the deposited films were smooth and uniform. CV results showed that the peak currents increase monotonically with the amounts of graphene and [Ru(NH3)6]3+. ASV results showed that modification of the GCE with graphene, [Ru(NH3)6]3+ and Nafion greatly enhanced the electrode’s sensitivity in detecting Pb2+ and Cd2+. This can be attributed to the high surface area-to-volume ratio of graphene, the mediation of elec-tron transfer by [Ru(NH3)6]3+ and the antifouling and cationic exchange capabilities of Nafion. The highest peak current for both Pb2+ and Cd2+ were obtained from the electrode modified with 1.5 mg [Ru(NH3)6]3+ and 3.0 mg graphene. A linear relationship between the peak current and metal concentration was obtained in the range of 1.4 ppb to 20 ppb for both Pb2+ and Cd2+ with a detection limit of 1.4 ppb. The modified electrodes were successful in detecting Cd2+ in real water samples. ASV results were verified using atomic absorption spec-troscopy.


2020 ◽  
Vol 13 ◽  
pp. 117862211989846 ◽  
Author(s):  
Ahmadreza Yazdanbakhsh ◽  
Seyed Nadali Alavi ◽  
Seyed Alireza Valadabadi ◽  
Fatemeh Karimi ◽  
Zainab Karimi

Heavy metals are among the most critical environmental pollutants close to industrial areas. One example is the cultivated fields in the south of Alborz industrial city in Iran, which is irrigated by treated industrial wastewater. It is contaminated by heavy metals and irrigation with wastewater treatment plants effluent, which made it salty. In this study, the application of 2 amendments, biosolids and cow manure, in improving the heavy metal accumulation in the ornamental sunflower from these types of soils was investigated. A greenhouse experiment using a completely randomized design with 4 replications and applying cow manure and biosolids in 3 weight ratios (6%, 12%, 25%) was conducted to evaluate the efficiency of sunflower in removing Pb, Ni, and Zn from the soil. Adding the amendments increased the rate of germination by 50% to 176%. Although the simultaneous utilization of cow manure in high ratios with biosolids and cow manure with low biosolids decreased the sunflower survival, nonetheless, the simultaneous addition of these organic amendments could increase the survival rate in other treatments. Moreover, the plants’ biomass was increased by adding modifiers such as cow manure and biosolids. The results showed that in treatments with 2 modifiers, the remediation factor of Pb, Zn, and Ni has increased 83.7 to 95.5, 78.4 to 87.5, and 74.9 to 94.9, respectively, in comparison to the control one. Therefore, we conclude that adding biosolids and cow manure simultaneously could improve the ornamental sunflower ability to accumulate heavy metals.


2020 ◽  
Vol 16 ◽  
Author(s):  
Pravin Shende ◽  
Nikita P. Devlekar

: Industrial wastewater is one of the by-products of several industries and it consists of water that requires treatment before it is discharged in water bodies. The presence of toxins in wastewater such as dyes and heavy metals is hazardous to human health and requires effective removal to reduce environmental pollution. Industrial wastewater treatment has become a global concern in healthcare and environment leading to the development of various technologies for the removal of toxins from wastewater. Various processes and technologies such as advanced oxidation processes, adsorption and membrane technology show potential in treating industrial wastewater. Another source of toxins in the form of pesticides is harmful to human health leading to severe health problems. Nanocomposites show potential as efficient adsorbents for the removal of toxins owing to the enhanced adsorption capacity, promising physicochemical properties and high surface-to-volume ratio due to nanoscale dimension. Nanocomposites are cost effective and efficient nanoadsorbents for the removal of various toxins. This review focuses on the potential applications of nanocomposites as adsorbents for the removal of toxins like dyes, heavy metals and pesticides from wastewater and biological systems. The use of nanocomposites as efficient adsorbents in the removal of toxins, various isotherm models and adsorption kinetics applied in the mechanism of adsorption are also discussed in the article. In the near future, nanocomposites may provide a simple, economical and efficient adsorption system for the removal of toxins from wastewater and biological systems.


Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Anna V. Kirillova ◽  
Anna A. Danilushkina ◽  
Denis S. Irisov ◽  
Nataliya L. Bruslik ◽  
Rawil F. Fakhrullin ◽  
...  

Cadmium (Cd) and lead (Pb) are heavy metals, important environmental pollutants, and potent toxicants to organism. Lactic acid bacteria (LAB) have been reported to remove Cd and Pb from solutions and therefore represent a useful tool for decontamination of food and beverages from heavy metals. Heavy metal ion binding by LAB was reported as metabolism-independent surface process. In this work tenLactobacillusstrains were investigated with respect to hydrophobicity, Lewis acid-base, and electrostatic properties of their outer cell surface in order to characterize their Cd and Pb removal capacity. SevenL. plantarumandL. fermentumstrains were shown to remove Cd from culture medium. The metabolism-dependent accumulation mechanism of Cd removal was proposed based on extended character of Cd binding and lack of correlation between any of the surface characteristics and Cd removal. The results of this study should be considered when selecting probiotic strains for people at risk of Cd exposure.


Author(s):  
Virendra Kumar Yadav ◽  
Nisha Choudhary ◽  
Samreen Heena Khan ◽  
Parth Malik ◽  
Gajendra Kumar Inwati ◽  
...  

Nanotechnology is one of the most reliable techniques for the remediation of heavy metals. As nanoparticles have a higher surface area to volume, ratio, and high surface energies, so nano-based absorbents are very efficient. Adsorption technique is the most preferred for the remediation of wastewater pollutants. In the current study, a comparative study was done between bio sorbents, nanosorbents and bio nanosorbents. The chapter studies with the synthesis and characterization of the bio sorbents, bionanosorbents, their mechanism of sorption, their synthesis, in addition, application for the remediation of heavy metals from wastewater. The fly ash is an industrial byproduct. Biosorbents have immense applications in the field of bioremediation of heavy metals. Further, their components have also enhanced removal efficiency from the wastewater.


2020 ◽  
Vol 99 (5) ◽  
pp. 478-482
Author(s):  
N. P. Setko ◽  
A. G. Setko ◽  
Ekaterina V. Bulycheva ◽  
A. V. Tyurin ◽  
E. Yu. Kalinina

Introduction. Changes in the body of children and adolescents aimed at adapting to environmental factors are determined by genetic polymorphism in xenobiotic biotransformation genes, determining the degree of susceptibility of the child’s body to pollutants, which is the basis of modern personalized preventive medicine when managing risks to the health of the child population under the influence of environmental factors. Material and methods. Trace elements, including heavy metals, lead and cadmium, were determined in the hair of 256 practically healthy teenagers by atomic absorption spectrophotometry. Depending on the level of content of the latter, two groups of adolescents were formed to determine six genes of the cytochrome P-450 family. Group 1 consisted of adolescents whose cadmium lead content exceeded the average Russian indices. The second group included adolescents whose heavy metals were above the level of average Russian standards. Results. Studies have shown that in adolescents of the 1st group, compared with the data of adolescents of the 2nd group, an increase in the number of carriers of two mutant alleles at the locus rs 1048943 (gene CYP1A1) is 3.08 times, rs 464621 (gene CYP1A1) is 1. 8 times; locus rs 2069522 (CYP1A2 gene) 3.63 times; locus rs 1799853 (CYP2C9 * 2 gene) 4.5 times; locus rs 1057910 (gene CYP2C9 * 3) 3.8 times and locus rs 2279343 (gene CYP2B6) 4.25 times. Moreover, carriers of two normal alleles in adolescents of the first group at the locus rs 1048943 (gene CYP1A1) were 5.14 times; locus rs 2279343 (CYP2B6 gene) was 6.5 fold less than among adolescents of the 2nd group; and at the locus rs 464621 (gene CYP1A1), rs 2069522 (gene CYP1A2), rs 1799853 (gene CYP2C9 * 2), rs 1057910 (gene CYP2C9 * 3) there were no carriers of normal homozygotes. Conclusion. Group 1 adolescents with heavy metal contamination of the body are carriers significantly in a greater number of pathological mutations in the genes of the cytochrome P-450 detoxification system in comparison with data from group 2 adolescents.


Sign in / Sign up

Export Citation Format

Share Document