Functionalized Magnetic Nanoparticles for Environmental Remediation

Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.

Author(s):  
Ravindra Kumar Gautam ◽  
Shivani Soni ◽  
Mahesh Chandra Chattopadhyaya

Water pollution by anthropogenic activities is proving to be of critical concern as the heavy metals affect aquatic organisms and can quickly disperse to large distances. This poses a risk to both human health and the aquatic biota. Hence, there is a need to treat the wastewater containing toxic metals before they are discharged into the water bodies. During recent years, magnetic nanoparticles came to the foreground of scientific interest as a potential adsorbent of novel wastewater treatment processes. Magnetic nanoparticles have received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, multi functionality, excellent magnetic properties, low-cost synthesis, and great biocompatibility. The multi-functional magnetic nanoparticles have been successfully applied for the reduction of toxic metal ions up to ppb level in waste-treated water. This chapter highlights the potential application of magnetic nanoparticles for the removal of heavy metals.


2021 ◽  
Author(s):  
Ashoka Gamage ◽  
Thiviya Punniamoorthy ◽  
Terrence Madhujith

Environmental pollution is becoming a major global issue with increasing anthropogenic activities that release massive toxic pollutants into the land, air, and water. Nanomaterials have gained the most popularity in the last decades over conventional methods because of their high surface area to volume ratio and higher reactivity. Nanomaterials including metal, metal oxide, zero-valent ions, carbonaceous nanomaterials, and polymers function as adsorbents, catalysts, photocatalysts, membrane (filtration), disinfectants, and sensors in the detection and removal of various pollutants such as heavy metals, organic pollutants, dyes, industrial effluents, and pathogenic microbial. Polymer-inorganic hybrid materials or nanocomposites are highly studied for the removal of various contaminants. Starch, a heteropolysaccharide, is a natural biopolymer generally incorporated with other metal, metal oxide, and other polymeric nanoparticles and has been reported in various environmental remediation applications as a low-cost alternative for petroleum-based polymers. Therefore, this chapter mainly highlights the various nanomaterials used in environmental remediation, starch-based hybrid nanomaterials, and their application and limitations.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1760 ◽  
Author(s):  
Fernanda Guerra ◽  
Mohamed Attia ◽  
Daniel Whitehead ◽  
Frank Alexis

Environmental remediation relies mainly on using various technologies (e.g., adsorption, absorption, chemical reactions, photocatalysis, and filtration) for the removal of contaminants from different environmental media (e.g., soil, water, and air). The enhanced properties and effectiveness of nanotechnology-based materials makes them particularly suitable for such processes given that they have a high surface area-to-volume ratio, which often results in higher reactivity. This review provides an overview of three main categories of nanomaterials (inorganic, carbon-based, and polymeric-based materials) used for environmental remediation. The use of these nanomaterials for the remediation of different environmental contaminants—such as heavy metals, dyes, chlorinated organic compounds, organophosphorus compounds, volatile organic compounds, and halogenated herbicides—is reviewed. Various recent examples are extensively highlighted focusing on the materials and their applications.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
M. Olga Guerrero-Pérez

During the last two decades, electrospinning has become a very popular technique for the fabrication of nanofibers due to its low cost and simple handling. Nanofiber materials have found utilization in many areas such as medicine, sensors, batteries, etc. In catalysis, these materials also present important advantages, since they present a low resistance to internal diffusion and a high surface area to volume ratio. These advantages are mainly due to the diameter–length proportion. A bibliographic analysis on the applications of electrospun nanofibers in catalysis shows that there are two important groups of catalysts that are being investigated, based on TiO2 and in carbon materials. The main applications found are in photo- and in electro-catalysis. The present study contributes by reviewing these catalytic applications of electrospun nanofibers and demonstrating that they are promising materials as catalysts, underlining some works to prove the advantages and possibilities that these materials have as catalysts. On one hand, the possibilities of synthesis are almost infinite, since with coaxial electrospinning quite complex nanofibers with different layers can be prepared. On the other hand, the diameter and other properties can be controlled by monitoring the applied voltage and other parameters during the synthesis, being quite reproducible procedures. The main advantages of these materials can be grouped in two: one related to their morphology, as has been commented, relative to their low resistance and internal diffusion, that is, their fluidynamic behavior in the reactor; the second group involves advantages related to the fact that the active phases can be nanoscaled and dispersed, improving the activity and selectivity in comparison with conventional catalytic materials with the same chemical composition.


2004 ◽  
Vol 40 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E. Deliyanni ◽  
D. Bakoyannakis ◽  
A. Zouboulis ◽  
K. Matis

The application of an innovative, simple and low cost method was tested for the preparation of nanocrystalline iron hydroxides and oxyhydroxides; different iron precursors have been earlier used and combined to different volatile precipitating agents. The examined in the present product, akagan?ite [?-FeO(OH)], had high surface area and definite pore size distribution. The produced materials were examined in detail (i.e. by powder X-ray diffraction, TEM and nitrogen sorption measurement). Main aim of this study was to evaluate the efficiency of the prepared material in the removal of heavy and toxic metal cations, like Cd(II), from aqueous solutions; cadmium constitutes a priority pollutant. Sorption was found to depended on the solution pH and its ionic strength. Typical isotherm models were applied and calculated the values of maximum adsorbent capacity for the metal as well as that of the enthalpy change during the removal process.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Rabia Baby ◽  
Bullo Saifullah ◽  
Mohd Zobir Hussein

Abstract Nanotechnology is an advanced field of science having the ability to solve the variety of environmental challenges by controlling the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic nature, high surface area, easier biodegradation, and particularly useful environmental remediation. Heavy metal contamination in water is a major problem and poses a great risk to human health. Carbon nanomaterials are getting more and more attention due to their superior physicochemical properties that can be exploited for advanced treatment of heavy metal-contaminated water. Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene oxide, and activated carbon have great potential for removal of heavy metals from water because of their large surface area, nanoscale size, and availability of different functionalities and they are easier to be chemically modified and recycled. In this article, we have reviewed the recent advancements in the applications of these carbon nanomaterials in the treatment of heavy metal-contaminated water and have also highlighted their application in environmental remediation. Toxicological aspects of carbon-based nanomaterials have also been discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. E. A. Botteon ◽  
L. B. Silva ◽  
G. V. Ccana-Ccapatinta ◽  
T. S. Silva ◽  
S. R. Ambrosio ◽  
...  

AbstractGold nanoparticles (AuNPs) are highlighted due to their low toxicity, compatibility with the human body, high surface area to volume ratio, and surfaces that can be easily modified with ligands. Biosynthesis of AuNPs using plant extract is considered a simple, low-cost, and eco-friendly approach. Brazilian Red Propolis (BRP), a product of bees, exhibits anti-inflammatory, anti-tumor, antioxidant, and antimicrobial activities. Here, we described the biosynthesis of AuNPs using BRP extract (AuNPextract) and its fractions (AuNPhexane, AuNPdichloromethane, AuNPethyl acetate) and evaluated their structural properties and their potential against microorganisms and cancer cells. AuNPs showed a surface plasmon resonance (SPR) band at 535 nm. The sizes and morphologies were influenced by the BRP sample used in the reaction. FTIR and TGA revealed the involvement of bioactive compounds from BRP extract or its fractions in the synthesis and stabilization of AuNPs. AuNPdichloromethane and AuNPhexane exhibited antimicrobial activities against all strains tested, showing their efficacy as antimicrobial agents to treat infectious diseases. AuNPs showed dose-dependent cytotoxic activity both in T24 and PC-3 cells. AuNPdichloromethane and AuNPextract exhibited the highest in vitro cytotoxic effect. Also, the cytotoxicity of biogenic nanoparticles was induced by mechanisms associated with apoptosis. The results highlight a potential low-cost green method using Brazilian red propolis to synthesize AuNPs, which demonstrated significant biological properties.


Author(s):  
Brij Bhushan Tewari

Environmental contamination is one of the important issues that the world is facing today, it is always expanding and leading to the grave and harmful effect on the Earth. Nanoparticles have a diameter less than 100 nm exhibit new size-dependent properties compared with the bulk material. Engineered nanoparticles (ENPs) have unique characteristics in addition to the high surface area-to-volume ratio, which may increase their toxicity relative to bulk materials. Due to the high volume production of ENPs products such as carbon nanotubes, titanium dioxide, silver, zinc oxide environmental exposure to these compounds is very common. ENPs have their unique properties and applications in the areas of medicine, food& drink, construction, automotive, textiles, energy, electronics, environment etc. The present critical review is focused on the recent development of the applications of ENPs in the environmental remediation and their toxic effects.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Lakshmi Prasanna Koduru

Heavy metals are one of the primary contaminants in the environment [1]. Exposure to heavy metals, even at trace levels, is believed to be a high health risk for humans [2,3]. Heavy metals are naturally occurring throughout the earth’s crust [4]. But most of the environmental contamination results from the anthropogenic activities such as mining and smelting operations, industry, and domestic and agricultural use of metals and metalcontaining compounds. Migration of these contaminants into non-contaminated areas as dust or leachates through the soil and spreading of heavy metals containing sewage sludge are a few examples of events contributing towards contamination of the ecosystems [5]. Hence, water is the one of the major routes through which heavy metals and radionuclides may enter the human body [6,7]. The sources of water pollution are shown in Figure 1. The conventional wastewater purification techniques including chemical coagulation, photo degradation, precipitation, flocculation, activated sludge, membrane separation and ion exchange are limited to the removal of heavy metals at trace levels [7-9]. However, adsorption is one of the best methods for the purification of water, owing to its low cost and easy handling of materials [7,10-12]. Moreover, adsorption approaches using commercial activated carbon, micro-filtration and membrane techniques are effective, but their use is limited by the complicated installation process involved coupled with the high maintenance costs of the systems [7,13]. Hence, these drawbacks have necessitated the search for an alternative method which is inexpensive, renewable and cost-effective for the removal of heavy metals from aqueous solutions. Many scientific groups have prepared graphene or graphene oxide (GO) based hybrid nanocomposites for various potential applications [14-17]. The study of literature survey and stability of the GO-based nanocomposites prompted us to survey on graphene oxide and reduced graphene oxide-based inverse spinel nickel ferrite nanocomposites for the removal of heavy metals and radionuclides from water with the purpose of reducing their environmental impact


Sign in / Sign up

Export Citation Format

Share Document