scholarly journals Seasonal changes of macronutrients concentration in olive trees grown in acid and in alkaline soils

2021 ◽  
Vol 49 (4) ◽  
pp. 12498
Author(s):  
Nicholas K. MOUSTAKAS ◽  
Pantelis E. BAROUCHAS ◽  
Panagiota VATISTA ◽  
Emmanouil KALANTZIS

Leaf samples from mature olive (Olea europaea L. cv. ‘Kalamon’) trees were collected monthly from April 2018 to March 2019 from two olive orchards, cultivated one in acid and one in alkaline soil, located in Western Greece. Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations in the leaves were determined and seasonal variation curves were calculated for each nutrient and orchard. The seasonal concentration patterns of N, P, K, Ca, and Mg nutrients were almost similar in both soils. Seasonal variation nutrient curves independently of soil acidity varied according to vegetation stages and no significant differences in nutrient concentrations were observed at different development stages between olives grown in the acid or the alkaline soils, with only one exception the leaf K concentration. The nutrient concentration measured in wintertime was at a sufficient level for optimum olive growth in both orchards. These concentrations could be used as reference values for leaf analysis interpretation and for developing an optimum fertilization program under Mediterranean climatic conditions.

Author(s):  
Daniely F. Braga ◽  
Fabio H. T. de Oliveira ◽  
Hemmannuella C. Santos ◽  
Adelson P. Araújo ◽  
Everaldo Zonta

ABSTRACT Sunflower is a crop that has aroused the interest of farmers because of its adaptability to wide climatic conditions and for its use in biodiesel production. However, there are only a few studies on sunflower fertilization in alkaline soils. This study aimed to evaluate nitrogen (N) and phosphorus (P) fertilization in sunflower (Helianthus annuus L.) cultivated in alkaline soil. A field experiment was carried out in Baraúnas-RN, Brazil, in a Haplic Cambisol derived from calcareous rock, where the sunflower H-251 hybrid was cultivated. The treatments were a combination of four doses of N (30, 60, 90 and 120 kg ha-1) and four doses of P2O5 (30, 60, 90 and 120 kg ha-1). Sunflower growth and yield increased with the doses of N and P2O5. Doses of 30 kg ha-1 of N and 30 kg ha-1 of P2O5 were more economical, corresponding to grain yield of 2378 kg ha-1. Critical levels associated with these doses of N and P2O5 were 28.2 g kg-1 for N leaf content, 2.84 for P leaf content, and 6.75 mg dm-3 for soil available P extracted by Mehlich-1.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yendi E. Navarro-Noya ◽  
César Valenzuela-Encinas ◽  
Alonso Sandoval-Yuriar ◽  
Norma G. Jiménez-Bueno ◽  
Rodolfo Marsch ◽  
...  

In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic CandidatusNitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils.Halobiforma,Halostagnicola,Haloterrigena, andNatronomonaswere found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.


Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 737 ◽  
Author(s):  
IJ Rochester ◽  
GA Constable ◽  
DA Macleod

The literature pertaining to N immobilization indicates that ammonium is immobilized in preference to nitrate. Our previous research in an alkaline clay soil has indicated substantial immobilization of nitrate. To verify the preference for immobilization of nitrate or ammonium by the microbial biomass in this and other soil types, the immobilization of ammonium and nitrate from applications of ammonium sulfate and potassium nitrate following the addition of cotton crop stubble was monitored in six soils. The preference for ammonium or nitrate immobilization was highly correlated with each soil's pH, C/N ratio and its nitrification capacity. Nitrate was immobilized in preference to ammonium in neutral and alkaline soils; ammonium was preferentially immobilized in acid soils. No assimilation of nitrate (or nitrification) occurred in the most acid soil. Similarly, little assimilation of ammonium occurred in the most alkaline soil. Two physiological pathways, the nitrate assimilation pathway and the ammonium assimilation pathway, appear to operate concurrently; the dominance of one pathway over the other is indicated by soil pH. The addition of a nitrification inhibitor to an alkaline soil enhanced the immobilization of ammonium. Recovery of 15N confirmed that N was not denitrified, but was biologically immobilized. The immobilization of 1 5 ~ and the apparent immobilization of N were similar in magnitude. The identification of preferential nitrate immobilization has profound biological significance for the cycling of N in alkaline soils.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7949 ◽  
Author(s):  
Chao Yang ◽  
Jingjing Li ◽  
Yingjun Zhang

Background Soil aggregate-size classes, structural units of soil, are the important factors regulating soil organic carbon (SOC) turnover. However, the processes of litter C mineralization and storage in different aggregates-size classes are poorly understood, especially in the highly alkaline soils of north China. Here, we ask how four different aggregate sizes influence rates of C release (Cr) and SOC storage (Cs) in response to three types of plant litter added to an un-grazed natural grassland. Methods Highly alkaline soil samples were separated into four dry aggregate classes of different sizes (2–4, 1–2, 0.25–1, and <0.25 mm). Three types of dry dead plant litter (leaf, stem, and all standing dead aboveground litter) of Leymus chinensis were added to each of the four aggregate class samples. Litter mass loss rate, Cr, and Cs were measured periodically during the 56-day incubation. Results The results showed that the mass loss in 1–2 mm aggregates was significantly greater than that in other size classes of soil aggregates on both day 28 and day 56. Macro-aggregates (1–2 mm) had the highest Cr of all treatments, whereas 0.25–1 mm aggregates had the lowest. In addition, a significant negative relationship was found between Cs/Cr and soil pH. After incubation for 28 and 56 days, the Cs was also highest in the 1–2 mm aggregates, which implied that the macro-aggregates had not only a higher CO2 release capacity, but also a greater litter C storage capacity than the micro-aggregates in the highly alkaline soils of north China.


2009 ◽  
Vol 52 (5) ◽  
pp. 459-465
Author(s):  
B. Bülbül ◽  
M. B. Ataman

Abstract. In this study, the effect of climatic conditions on oestrus occurrence was investigated by using 9 972 oestrus records of cows recorded between 1995 and 2003. A distinct seasonal variation in the oestrus occurrence was determined. Oestrus occurrence observed in January, March, November and December was less than that in June and September (P<0.05). Annual distribution of the oestrus occurrence was positively correlated with environment temperature and insulation duration, but it was negatively correlated with rainfall (P<0.01). However, there was no relationship between oestrus occurrence and relative humidity. In addition to these, there was a slight decrease in the oestrus response when the temperature-humidity index (THI) was above 72; nevertheless, this decrease was not significant (P >0.05). The data presented in this study demonstrated that the increase in the environmental temperature up to 23 °C did not cause a suppressive effect on the ovarian activity. In conclusion, annual distribution of the oestrus occurrence is positively correlated with environment temperature and insulation duration whereas it is negatively correlated with rainfall in Holstein cows, in this study.


2013 ◽  
Vol 41 (1) ◽  
pp. 255 ◽  
Author(s):  
Ercan YILDIZ ◽  
Mustafa KAPLANKIRAN ◽  
Turan Hakan DEMIRKESER ◽  
Celil TOPLU

The study was conducted at the experimental farm of Mustafa Kemal University, Dörtyol, Turkey during the 2010 and 2011 growing seasons. The aim of this study was to investigate the effect of ‘Troyer’ and ‘Carrizo’ citranges (Poncirus trifoliata Raf. × Citrus sinensis Osb. var. ‘Troyer’ and ‘Carrizo’), and common sour orange (Citrus aurantium L. var. common), rootstocks on the seasonal variation of carbohydrate content in the leaves of cvs. ‘Fremont’, ‘Nova’, and ‘Robinson’ mandarin. The seasonal variation of carbohydrate content of the three cultivars budded on different rootstocks was nearly same. Soluble carbohydrate concentration showed a continuous decrease from January to mid or late-summer, and then slowly began to increase after early autumn till winter. The sucrose was the dominant soluble carbohydrate in leaves. The seasonal evolution of starch content in leaves increased initially during January to March, and then decreased in April. The starch concentration showed a continuous decrease slowly until the mid-autumn, and then accumulation began during late-autumn and winter. The total carbohydrate content differences among the rootstocks were significant, but the content was changed among the cultivars and according to the season. The change in the total carbohydrate content of leaf tissues showed a strong similarity in cultivars budded on different rootstocks throughout the year. The total carbohydrate content reached their lowest levels in July for cv. ‘Robinson’, in August for cv. ‘Fremont’ and cv. ‘Nova’. The total carbohydrate content in leaves increased from the mid- or late-summer to winter. It is suggested that the seasonal variation of carbohydrate content in plant tissues can be considered during fertilization program in mandarin trees.


2011 ◽  
Vol 62 (3) ◽  
pp. 248 ◽  
Author(s):  
Alejandro Radrizzani ◽  
Scott A. Dalzell ◽  
H. Max Shelton

Plant analysis is an important tool for predicting plant nutrient imbalances associated with variable soil fertility and it is usually based on analysis of index plant parts such as the youngest fully expanded leaf (YFEL). Recent use of the YFEL to diagnose plant nutrient status of Leucaena leucocephala subsp. glabrata (leucaena) pastures has given unreliable results. Two field trials, one irrigated and one dryland, were conducted in subtropical Queensland to investigate the effect of index leaf selection, plant phenology and environmental factors (ambient temperature and water stress) on leaf nutrient concentrations. The YFEL was identified as the best plant part to sample because it was readily identifiable and had consistent concentrations of most nutrients compared to older and younger leaves provided specific conditions were met when sampling. At both sites there was significant (P < 0.05) seasonal variation in nutrient concentrations in leucaena YFEL, which was poorly correlated with ambient temperature but strongly correlated with rainfall in the preceding 28 days and chronological age of YFEL. Advancing plant phenological stage of development increased the chronological age of YFEL from 12 to 73 days under irrigation since no new leaves were produced for prolonged periods during pod filling and maturation. Similarly, YFEL could be 146 days old on plants in vegetative stages of growth under prolonged drought in dryland conditions. YFEL of ~21 days of age or less were found to be optimal for analysis. Furthermore, as the calcium (Ca) concentration of YFEL was strongly correlated with leaf chronological age, this parameter could be used to determine the age of the leaves sampled. YFEL with Ca concentrations >0.75% DM were likely to be >21 days in age and should not be used for the diagnosis of plant nutrient status. It was concluded that leaf analysis could be used to confidently assess leucaena plant nutrient status provided the YFEL were sampled from actively growing plants in vegetative development that had received rainfall/irrigation in the preceding 28 days and were <21 days of age.


1973 ◽  
Vol 81 (2) ◽  
pp. 327-337 ◽  
Author(s):  
P. K. R. Nair ◽  
O. Talibudeen

SummaryProcedures for measuring K+ and NO-3 activities in the root zones of field crops, using specific-ion electrodes, were standardized. For K, a 1·0 M-NaCl salt bridge and KC1 standards in water, for NO3, a saturated KC1 salt bridge and KN03 standards in water, and for both electrodes, a 1:0·5, soil: water ratio, and 30 sec equilibration time were found satisfactory.Recovery of added K in soil pastes by the K electrode and chemical analysis of the soil water extract compared well, but the recovery was about 8% only. The corresponding recovery of added N was about 87 and 95% respectively.Relative changes in the rates and magnitudes of NO3 and K concentrations were measured with these electrodes, laterally and vertically, in the root zone, during active crop growth, from the N2 ½(PKNaMg), N2 PKNaMg, and N4PKNaMg treatments of the Broadbalk Winter Wheat Experiment.In all fertilizer treatments, at all times, the nutrient concentrations were most at 45 cm from the crop (in the uncropped area) and least within the cropped area. The differences between these extremes represent nutrient depletion by the crop, the ‘45 cm’ measurementsindicating changes in uncropped, but fertilized, areas.Soil nitrate depletion by the crop was much more at 12·5 cm and 20 cm depths than at 5 cm. Maximum NO3 depletion was observed during the later stages of crop growth, at ‘pre-panicle emergence’ and at ‘grain filling’. Depletion decreased and the soil NO3 level recovered partially as the crop reached maturity.Periodic changes in the K concentration at each site and the corresponding K depletions were much less. Periods of IC stress on the soil were few and less clearly demarcated. Soil K concentration started to recover at the ‘grain filling’ stage about a month earlier than with NO3.Changes in NO3 and K concentrations seem to relate more to the amounts given of each nutrient, than to the N:K ratio in each fertilizer treatment. However, changes in NO3 and K concentrations, and also NO3 and K depletion, occurred consecutively. This indicates an alternating periodicity in the demands of the crop for NO3 and K respectively throughout growth.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Maria do Socorro Ferraz da Costa ◽  
Marcos Pezzi Guimarães ◽  
Walter dos Santos Lima ◽  
Ana Julia Ferraz da Costa ◽  
Elias Jorge Facury Filho ◽  
...  

The aims of this study were to evaluate the seasonal variation and frequency distribution of Rhipicephalus (Boophilus) microplus, Haematobia irritans, and Dermatobia hominis on crossbred heifers under field conditions in the northeast of Minas Gerais state, southeastern Brazil. From November 2007 to September 2009 (23 months), 40 heifers aged 16.6±2.4 months were divided into groups A (1/4 Holstein × 3/4 Gir) and B (1/2 Holstein × 1/2 Gir) and had the monthly infestation estimated along with the climatic conditions. The mean maximum and minimum temperatures were 28.5 and 19°C, respectively. The ectoparasites were present on animals in all months of the year. The levels of ticks on the animals were low (3.0±0.2 ticks/animal), with the highest density in midwinter. The temperature was the climatic factor that most influenced the tick levels. The population of H. irritans (13.9±0.3 flies/animal) and D. hominis (1.5±0.2 larvae/animal) on heifers was more influenced by rainfall and exhibited two population peaks during the year. 1/2 Holstein heifers harbored significantly more H. irritans and D. hominis than 1/4 Holstein heifers. The results are discussed considering the most appropriate periods to apply ectoparasiticides and the genetic make-up of the animals.


Sign in / Sign up

Export Citation Format

Share Document