scholarly journals Neurodegenerative changes in the brainstem and olfactory bulb in people older than 50 years old: a descriptive study

2015 ◽  
Vol 73 (7) ◽  
pp. 569-577 ◽  
Author(s):  
Francine Hehn de Oliveira ◽  
Edson Rodrigues Neto ◽  
Mariana Kumaira Fonseca ◽  
André Silvestre Reitz da Costa ◽  
Marcio Aloisio Bezerra Cavalcanti Rockenbach ◽  
...  

With the increase in life expectancy in Brazil, concerns have grown about the most prevalent diseases in elderly people. Among these diseases are neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Protein deposits related to the development of these diseases can pre-date the symptomatic phases by years. The tau protein is particularly interesting: it might be found in the brainstem and olfactory bulb long before it reaches the limbic cortex, at which point symptoms occur. Of the 14 brains collected in this study, the tau protein was found in the brainstems of 10 (71.42%) and in olfactory bulbs of 3 out 11. Of the 7 individuals who had a final diagnosis of Alzheimer’s disease (AD), 6 presented tau deposits in some region of the brainstem. Our data support the idea of the presence of tau protein in the brainstem and olfactory bulb in the earliest stages of AD.

2020 ◽  
Vol 9 (2) ◽  
pp. 1782-1788
Author(s):  
A.A. Okesina ◽  
M.S. Ajao ◽  
M.O. Buhari ◽  
A.M. Afodun ◽  
K.B. Okesina ◽  
...  

Neurodegenerative diseases cause neural cells to lose both the functional and sensory abilities as a result of genetic factors, proteopathies and mitochondrial dysfunction. Neurodegeneration forms the basis of most neurodegenerative disorders for example Alzheimer’s disease, Huntington’s diseases, and Parkinson’s diseases. The mechanism that underlines the process of neurodegeneration is not well understood. Understanding the process and mechanism involved in neurodegeneration might offer a better therapeutic approach to positively manage cases of neurodegenerative diseases. Therefore, this study’s target was to create an animal model to study neurodegeneration. Sixteen adult male Wistar rats were used in the study and divided into two groups. Control (0.2 mL of normal saline (NS)), and trimethyltin-treated (TMT, 8 mg/kg stat dose only). These animals underwent perfusion with 4% paraformaldehyde, brain excision and analysis of p53 antigen, GFAP and Bielshowsky on these tissues. The results showed that animals in the control group showed presence of activated p53 antigen, reactive astrogliosis, neurofibrillary tangles, and amyloid plaques within the cytoplasm of the hippocampal cells. Cornus Ammonis (CA2) and (CA3) showed more of the trimethylrtin injury than CA1 and CA4. This study thus revealed that, intra-peritoneal administration of single dose of 8mg/kg of trimethyltin can offer an attractive disease model to study some neurodegenerative diseases. Keywords: p53 antigen, Bielshowsky, Glia fibrillary acidic protein, Trimethyltin, Hippocampus,


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 656
Author(s):  
Dariusz Koziorowski ◽  
Monika Figura ◽  
Łukasz M. Milanowski ◽  
Stanisław Szlufik ◽  
Piotr Alster ◽  
...  

Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Smita Eknath Desale ◽  
Subashchandrabose Chinnathambi

AbstractAlzheimer’s disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer’s disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling.


2008 ◽  
Vol 276 (1657) ◽  
pp. 667-673 ◽  
Author(s):  
Darla K Zelenitsky ◽  
François Therrien ◽  
Yoshitsugu Kobayashi

This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds.


Author(s):  
Maria João Matos

Alzheimer's and Parkinson's disease are the most prevalent neurodegenerative diseases and the leading causes of dementia worldwide. The etiology of these multifactorial pathologies is not completely known. The available therapeutic approaches can cause temporary relief of symptoms but cannot slow down their progression or cure them. Life-changing therapeutic solutions are urgently needed, as the number of people suffering from these pathologies has been increasing quickly over the last few decades. Several targets are being studied, and innovative approaches are being pursued to find new therapeutic options. This overview is focused on the most recent information regarding the paradigm of using multitarget compounds to treat both Alzheimer's and Parkinson's disease.


Author(s):  
Xuewei Dong ◽  
Ruxi Qi ◽  
Qin Qiao ◽  
Xuhua Li ◽  
Fangying Li ◽  
...  

Abnormal aggregation of proteins into pathological amyloid fibrils are implicated in a wide range of devastating human neurodegenerative diseases. Intracellular fibrillary inclusions formed by Tau protein are characterized as the...


2021 ◽  
pp. 1-15
Author(s):  
Alireza G. Senejani ◽  
Jasmin Maghsoudlou ◽  
Dina El-Zohiry ◽  
Gauri Gaur ◽  
Keith Wawrzeniak ◽  
...  

Background: Infections by bacterial or viral agents have been hypothesized to influence the etiology of neurodegenerative diseases. Objective: This study examined the potential presence of Borrelia burgdorferi spirochete, the causative agent of Lyme disease, in brain autopsy tissue of patients diagnosed with either Alzheimer’s (AD) or Parkinson’s diseases. Methods: Brain tissue sections from patients with age-matched controls were evaluated for antigen and DNA presence of B. burgdorferi using various methods. Positive Borrelia structures were evaluated for co-localization with biofilm and AD markers such as amyloid and phospho-tau (p-Tau) using immunohistochemical methods. Results: The results showed the presence of B. burgdorferi antigen and DNA in patients with AD pathology and among those, one of them was previously diagnosed with Lyme disease. Interestingly, a significant number of Borrelia-positive aggregates with a known biofilm marker, alginate, were found along with the spirochetal structures. Our immunohistochemical data also showed that Borrelia-positive aggregates co-localized with amyloid and anti-phospho-tau markers. To further prove the potential relationship of B. burgdorferi and amyloids, we infected two mammalian cell lines with B. burgdorferi which resulted in a significant increase in the expression of amyloid-β and p-Tau proteins in both cells lines post-infection. Conclusion: These results indicate that B. burgdorferi can be found in AD brain tissues, not just in spirochete but a known antibiotics resistant biofilm form, and its co-localized amyloid markers. In summary, this study provides evidence for a likely association between B. burgdorferi infections and biofilm formation, AD pathology, and chronic neurodegenerative diseases.


2000 ◽  
Vol 47 (8) ◽  
pp. S7
Author(s):  
R.A. Nixon ◽  
K. Duff ◽  
Y. Matsuoka

Author(s):  
Maurizio Manigrasso ◽  
Carmela Protano ◽  
Matteo Vitali ◽  
Pasquale Avino

This paper presents an overview of the literature studies on the sources of ultrafine particles (UFPs), nanomaterials (NMs), and nanoparticles (NPs) occurring in indoor (occupational and residential) and outdoor environments. Information on the relevant emission factors, particle concentrations, size, and compositions is provided, and health relevance of UFPs and NPs is discussed. Particular attention is focused on the fraction of particles that upon inhalation deposit on the olfactory bulb, because these particles can possibly translocate to brain and their possible role in neurodegenerative diseases is an important issue emerging in the recent literature.


2001 ◽  
Vol 15 (3,4) ◽  
pp. 141-150 ◽  
Author(s):  
Omar M. A. El-Agnaf ◽  
G. Brent Irvine

α-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms have been associated with early onset Parkinson's disease. A fragment of α-synuclein has also been identified as the non-Aβ component of Alzheimer's disease amyloid (NAC). Ageing solutions of α-synuclein and NAC leads to formation of β-sheet, detectable by circular dichroism spectroscopy, and aggregation to form amyloid-like fibrils, detectable by electron microscopy. Differences in the rates of aggregation of the fibrils formed by α-synuclein and the two mutant proteins are presented. The toxicity of α-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified.


Sign in / Sign up

Export Citation Format

Share Document