scholarly journals Determination of the most susceptible phenological stage of rice panicles to infection by species of Fusarium graminearum

2019 ◽  
Vol 45 (3) ◽  
pp. 243-246
Author(s):  
Bruno Tabarelli Scheidt ◽  
Ricardo Trezzi Casa ◽  
Otávio Ajala Fiorentin ◽  
Flávio Chupel Martins ◽  
Paulo Kuhnem ◽  
...  

ABSTRACT Occurrence of rice seeds infected by Fusarium graminearum has shown the importance of identifying the most favorable phenological stage of panicles to grain infection. The experiments were conducted in two crop seasons under greenhouse conditions, using the rice hybrid INOV CL. The phenological stages during inoculation were complete booting, full heading and flowering. All plots were inoculated using two isolates of Fusarium graminearium species complex 15A (F. graminearium - 15-ADON) and FmNiv (F. meridionale - Nivalenol). Disease severity was estimated at weekly intervals and was used to calculate the area under the disease progress curve (AUDPC), while panicles were collected to determine the percentage of spotted grains and Fusarium incidence. Percentage of spotted grains and incidence of F. graminearum and F. meridionale were greater when inoculation was made during flowering stage, significantly differing from heading and booting stages. Rice flowering stage is more susceptible to infection by F. graminearum and F. meridionale, inducing higher disease severity and incidence of spotted grains, as well as presence of fungi in the grains. Flowering was the most susceptible stage in the two crop seasons for both isolates, and the complete booting stage presented the lowest values of AUDPC.

2020 ◽  
Vol 12 (8) ◽  
pp. 160
Author(s):  
Gislaine Gabardo ◽  
Maristella Dalla Pria ◽  
Henrique Luis da Silva ◽  
Mônica Gabrielle Harms

Soybean mildew caused by Oomycota Peronospora manshurica, is a disease widely spread in Brazil. In order to study the efficiency of soybean mildew control due to the application of alternative products and fungicide in the field, experiments were conducted in Ponta Grossa, PR, Brazil, during the 2013/2014 and 2014/2015 growing seasons. The design used was randomized blocks with four replications. The treatments were: 1-witness; 2-acibenzolar-S-methyl; 3-calcium; 4-micronutrients: copper, manganese and zinc; 5-micronutrients: manganese, zinc and molybdenum; 6-NK fertilizer; 7-Ascophyllum nodosum and 8-azoxystrobin + cyproconazole with the addition of Nimbus adjuvant. Four applications of alternative products (phenological stages V3, V6, R1 and R5.1) and two of fungicide (phenological stages R1 and R5.1) were performed. The mildew severity was estimated using a diagrammatic scale. The severity data made it possible to calculate the area under the disease progress curve (AUDPC). In the 2014/2015 harvest the disease was more severe. The control of downy mildew by the use of fungicide did not reduce the epidemic. The fungicide was not efficient in the two evaluated seasons. All tested alternative products reduced the disease severity and AUDPC in both seasons. The best results in reducing downy mildew were found with the application of acibenzolar-S-methyl, micronutrients (Cu, Mn, Zn) and A. nodosum.


2019 ◽  
Vol 49 (3) ◽  
Author(s):  
Bruno Tabarelli Scheidt ◽  
Juliano Berghetti ◽  
Eduardo José Zanella ◽  
Ricardo Trezzi Casa ◽  
Diego Bevilaqua ◽  
...  

ABSTRACT: The fungus Fusarium graminearum was one of the first pathogens described as causing infections in rice; however, in Brazil, there is no description of its occurrence in panicles. The present study aimed to describe the symptoms caused by F. graminearum infection in irrigated rice grains. The experiment was conducted in a greenhouse in duplicate using the irrigated rice cultivar SCS 121CL and hybrid INOV CL at the R4 (flowering) stage. Two isolate of Fusarium graminearium species complex 15A (F. graminearium - 15-ADON) and FmNiv (F. meridionale - Nivalenol), was inoculated onto panicles by spraying with macroconidia and the development of symptoms was monitored until harvest. There was no difference in symptoms among isolates. Light brown spots were observed in the glumes three days after inoculation. These later evolved into brown lesions of irregular shape and size. The glume darkened to purple when the grains were in the filling stage (R6). On maturation, the glume showed dark brown coloration. Severely infected grains were shriveled and brittle.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1530-1535 ◽  
Author(s):  
Jessica S. Engle ◽  
Laurence V. Madden ◽  
Patrick E. Lipps

Reliable greenhouse assays are needed to differentiate types of resistance in wheat to Fusarium graminearum. Genotypes with known field reactions were evaluated for resistance type using four greenhouse inoculation techniques. Percentage of spikelets with symptoms per spike (severity) and percentage of inoculated spikelets per spike developing symptoms were assessed 7, 10, and 14 days after inoculation (DAI). Genotypes were evaluated using disease assessments 14 DAI and area under the disease progress curve (AUDPC). Significant genotype-inoculation technique interactions for disease assessments indicated that genotypes responded differently to greenhouse inoculation techniques. The central floret injection technique used to assess resistance to spread within the spike (type II resistance) did not indicate a resistant response in genotypes with low field disease severity (putative type II). Atomizing macroconidia onto spikes, used to assess resistance to primary infection (type I resistance), indicated a resistant response in one of five genotypes with low field disease incidence (percentage of spikes with symptomatic spikelets) (putative type I). The inoculation techniques in the greenhouse were unable to differentiate between different types of partial resistance. Results indicated disparity in the ability of greenhouse inoculation methods to identify genotypes with partial resistance as observed in the field. It was concluded that atomizing conidia onto the spikes and assessing disease severity did not differentiate between resistance types. Additionally, a one-time assessment 14 DAI was determined to be as informative as multiple assessments and calculating the AUDPC.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lilian Auma Okiro ◽  
Richard Mbithi Mulwa ◽  
Maurice Edwards Oyoo ◽  
Eunice Machuka ◽  
Monica L. Parker ◽  
...  

Abstract Ralstonia solanacearum is a pathogen causing bacterial wilt disease of potato, resulting in 70% potato production losses in Kenya. A study was conducted to determine the diversity of Ralstonia solanacearum species complex strains within the main potato-growing regions of Kenya. Potato tubers were collected from different potato-growing regions of Kenya from visibly wilted potato plants, including tomato and irrigation water and cultured for pathogen isolation. Genomic DNA was isolated from 135 purified cultures of RSSC isolates and PCR amplified using multiplex and sequevar primers targeting the endoglucanase partial gene sequences. Pathogenicity test using R. solanacearum strain (phylotype II sequevar I) was done on Kenya Karibu, Shangi, Chulu, Wanjiku and Money Maker cultivars. Phylogenetic analysis of the partial endoglucanase gene identified two genospecies, R. pseudosolanacearum sp. nov (1.5%) and R. solanacearum (98.5%). All R. solanacearum strains clustered in sequevar I and were distributed in all the potato-growing regions surveyed. The cultivars were grown in a greenhouse for two cycles in a randomized complete block design and inoculated with R. solanacearum strain. The severity scores were assessed and the area under disease progress curve (AUDPC) was determined. All the cultivars tested for pathogenicity exhibited wilting symptoms at varying intervals after infection, with none showing complete resistance to R. solanacearum. Cultivar Shangi exhibited minimum disease severity and progression of 41.14% and AUDPC of 1041.7, respectively while Kenya Karibu was the most susceptible with a high progression rate of 68.24% and AUDPC of 1897.5, respectively. Money Maker, Chulu and Wanjiku showed no significant difference in disease severity depicting a simultaneous rate of infection among them. These findings provide valuable information to better understand the pathogen genetic diversity in Kenya and how it spreads.


2021 ◽  
Author(s):  
Sinegugu Precious Shude ◽  
Nokwazi Carol Mbili ◽  
Kwasi S Yobo

Four ASM (acibenzolar-S-methyl) concentrations were applied on wheat plants at different growth stages prior to inoculation with 1x105 conidia/ml of Fusarium graminearum. Thereafter, disease severity was monitored and recorded over time. All ASM concentrations reduced disease severity compared to the control. The best treatment, providing the lowest Area Under the Disease Progress Curve (AUDPC) units, high average Hundred Seed Weight (HSW) and reduced average Percentage Seed Infection (PSI), was 0.075 g/L ASM applied at anthesis. A weak but significant positive correlation was observed between AUDPC and PSI (r = 0.33; p = 0.0001). However, a moderate and weak negative correlation was observed between AUDPC and HSW (r = - 0.41; p < 0.0001) and HSW and PSI (r = - 0.18; p = 0.04) respectively. Higher ASM concentrations were more effective when applied at anthesis and lower concentrations at late boot. Moreover, repeated applications (applied at both late boot and anthesis) did not improve disease reduction. A disease reduction and deoxynivalenol (DON) reduction of up to 28.97% (0.075 g/L ASM applied at anthesis) and 18.79% (0.0375 g/L ASM applied at anthesis) was observed. However, DON and zearalenone (ZEA) reduction did not always correspond with disease severity reduction of tested treatments. This accentuates the importance of the development of integrated control strategies for the improved and effective management of Fusarium head blight (FHB) in wheat.


2020 ◽  
Vol 21 (24) ◽  
pp. 9762
Author(s):  
Soyol Dashbaldan ◽  
Cezary Pączkowski ◽  
Anna Szakiel

The process of fruit ripening involves many chemical changes occurring not only in the mesocarp but also in the epicarp, including changes in the triterpenoid content of fruit cuticular waxes that can modify the susceptibility to pathogens and mechanical properties of the fruit surface. The aim of the study was the determination of the ripening-related changes in the triterpenoid content of fruit cuticular waxes of three plant species from the Rosaceae family, including rugosa rose (Rosa rugosa), black chokeberry (Aronia melanocarpa var. “Galicjanka”) and apple (Malus domestica var. “Antonovka”). The triterpenoid and steroid content in chloroform-soluble cuticular waxes was determined by a GC-MS/FID method at four different phenological stages. The profile of identified compounds was rather similar in selected fruit samples with triterpenoids with ursane-, oleanane- and lupane-type carbon skeletons, prevalence of ursolic acid and the composition of steroids. Increasing accumulation of triterpenoids and steroids, as well as the progressive enrichment of the composition of these compounds in cuticular wax during fruit development, was observed. The changes in triterpenoid content resulted from modifications of metabolic pathways, particularly hydroxylation and esterification, that can alter interactions with complementary functional groups of aliphatic constituents and lead to important changes in fruit surface quality.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1222-1229 ◽  
Author(s):  
E. A. Newberry ◽  
L. Ritchie ◽  
B. Babu ◽  
T. Sanchez ◽  
K. A. Beckham ◽  
...  

Bacterial leaf spot of watermelon caused by Pseudomonas syringae has been an emerging disease in the southeastern United States in recent years. Disease outbreaks in Florida were widespread from 2013 to 2014 and resulted in foliar blighting at the early stages of the crop and transplant losses. We conducted a series of field trials at two locations over the course of two years to examine the chemical control options that may be effective in management of this disease, and to investigate the environmental conditions conducive for bacterial leaf spot development. Weekly applications of acibenzolar-S-methyl (ASM) foliar, ASM drip, or copper hydroxide mixed with ethylene bis-dithiocarbamate were effective in reducing the standardized area under the disease progress curve (P < 0.05). Pearson’s correlation test demonstrated a negative relationship between the average weekly temperature and disease severity (–0.77, P = 0.0002). When incorporated into a multiple regression model with the square root transformed average weekly rainfall, these two variables accounted for 71% of the variability observed in the weekly disease severity (P < 0.0001). This information should be considered when choosing the planting date for watermelon seedlings as the cool conditions often encountered early in the spring season are conducive for bacterial leaf spot development.


2021 ◽  
Vol 50 (1) ◽  
pp. 15-19
Author(s):  
Rakesh Punia ◽  
Pavitra Kumari ◽  
Anil Kumar ◽  
AS Rathi ◽  
Ram Avtar

Progression of Alternaria blight disease was measured on two susceptible Indian mustard varieties viz., RH 30 and RH 0749 sown at three different dates. The maximum increase in disease severity was recorded between first weeks of February and last week of February. During this period, the maximum and minimum temperature, relative humidity at morning and evening, average vapour pressure of morning and evening, maximum and bright sunshine hours and wind speed were higher, which resulted in congenial conditions for severe infection by the pathogen. The disease severity was positively correlated with maximum and minimum temperature, average vapour pressure, wind speed, sunshine hours and evaporation, while relative humidity and rainfall negatively correlated with Alternaria blight on both the varieties. A maximum value of area under disease progress curve was observed on cultivar RH 30 (651.1 cm2) as compared to RH 0749 (578.9 cm2), when crop was sown on 9th November.


2017 ◽  
Vol 18 (3) ◽  
pp. 162-165 ◽  
Author(s):  
Robert S. Emmitt ◽  
James W. Buck

Production nurseries and daylily hybridizers in the southeast United States rely on the use of fungicides to manage daylily rust, caused by the fungus Puccinia hemerocallidis. Foliar sprays of pyraclostrobin, flutolanil, tebuconazole, myclobutanil, chlorothalonil, mancozeb, pyraclostrobin + boscalid, flutolanil + tebuconazole, flutolanil + myclobutanil, flutolanil + chlorothalonil, and flutolanil + mancozeb applied on 14-day intervals, and a nontreated control, were evaluated under high disease pressure at three locations in Griffin, GA, in 2015. Tebuconazole or the tebuconazole + flutolanil treatment consistently had the lowest area under the disease progress curve (AUDPC) of the treatments. The addition of flutolanil to chlorothalonil or mancozeb did not improve rust control and no difference in disease severity was observed in any treatment containing contact fungicides on all assessment dates. Single application costs ranged from $10.21 to $95.96 with tebuconazole providing excellent disease management at a relatively low cost per application ($13.90).


Sign in / Sign up

Export Citation Format

Share Document