scholarly journals Resistance of Corynebacterium pseudotuberculosis in the Brazilian semiarid environment

2018 ◽  
Vol 38 (6) ◽  
pp. 1091-1096 ◽  
Author(s):  
Maria C.A. Sá ◽  
Samily A.S. Oliveira ◽  
Edmilson M. Dantas Jr ◽  
Gisele V. Gouveia ◽  
João J.S. Gouveia ◽  
...  

ABSTRACT: The semiarid northeast of Brazil contains a unique biome known as caatinga, with a maximum temperature of 40 ºC and a relativity humidity of 56%. The caatinga is characterized by a variety of plants, including Cereus jamacaru Dc (mandacaru), Poincianella microphylla Mart. ex G. Don (catingueira), Pilosocereus gounellei FAC Weber (xique-xique) and Mimosa tenuiflora (Willd.) Poir (jurema preta). Sheep and goat industries are economically strong in that region, despite the fact that caseous lymphadenitis is highly prevalent. The aim of the present study was to assess the survival and biofilm production of Corynebacterium pseudotuberculosis isolates in the environment and under controlled temperatures (28°C, 37°C and 42°C) under different surfaces (plants, soil, wood, wire and thorns). In addition, we investigated the effects of applying the disinfectants chlorhexidine, hypochlorite and quaternary ammonia in soil, tiles, wood and vegetation cover. Four strains of C. pseudotuberculosis were selected (two from goats and two from sheep) for inoculation according to their in vitro biofilm production. Adherence to microplates was used to assess the biofilm-forming ability of the bacteria. Lower survival rates were observed when isolates of C. pseudotuberculosis were subjected to a temperature of 42°C. In terms of caatinga biome plants, contamination of jurema-preta plants resulted in the lowest survival rates. The disinfectant quaternary ammonia promoted a lower inoculum survival in all surfaces. The disinfectants and the higher temperature contributed to the reduction of biofilm production in isolates of C. pseudotuberculosis. knowledge of these patterns is important for the establishment of disease control measures, given the questionable efficacy of the treatment and the immuno-prophylaxis of caseous lymphadenitis.

2013 ◽  
Vol 33 (11) ◽  
pp. 1319-1324 ◽  
Author(s):  
Maria da C.A. Sá ◽  
Josir L.A. Veschi ◽  
Grace B. Santos ◽  
Evandro S. Amanso ◽  
Samily A.S. Oliveira ◽  
...  

To verify the occurrence of caseous lymphadenitis in sheep and goats on farms of Pernambuco, Brazil, and in animals slaughtered in two Brazilian cities (Petrolina/PE and Juazeiro/BA), and to characterize the susceptibility profile of Corynebacterium pseudotuberculosis to disinfectants and antimicrobials, and its relationship with biofilm production were the objectives of this study. 398 samples were tested for sensitivity to antimicrobial drugs, disinfectants, and biofilm production. Among the 108 samples collected on the properties, 75% were positive for C. pseudotuberculosis. Slaughterhouse samples indicated an occurrence of caseous lymphadenitis in 15.66% and 6.31% for animals slaughtered in Petrolina and Juazeiro respectively. With respect to antimicrobials, the sensitivity obtained was 100% for florfenicol and tetracycline; 99.25% for enrofloxacin, ciprofloxacin and lincomycin; 98.99% for cephalothin; 98.74% for norfloxacin and sulfazotrim; 97.74% for gentamicin; 94.22% for ampicillin; 91.71% for amoxicillin; 91.21% for penicillin G; 89.19% for neomycin and 0% for novobiocin. In analyzes with disinfectants, the efficiency for chlorhexidine was 100%, 97.20% for quaternary ammonium, 87.40% for chlorine and 84.40% for iodine. 75% of the isolates were weak or non-biofilm producers. For the consolidated biofilm, found that iodine decreased biofilm formation in 13 isolates and quaternary ammonia in 11 isolates. The reduction of the biofilm formation was observed for iodine and quaternary ammonium in consolidated biofilm formation in 33% and 28% of the isolates, respectively. The results of this study highlight the importance of establishing measures to prevent and control the disease.


Author(s):  
Luiz Erlon Araújo Rodrigues ◽  
Cláudia Valle Cabral Dias dos Santos ◽  
André Nascimento Santos

Plants produce molecules such as terpenes, lectins and alkaloids that exert anticarcinogenic, antimicrobial and anti-inflammatory activities. Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis in goats and sheep. The prevalence of this infection is high in northeastern of Brazil. The present study evaluated the effects of a methanolic extract from the leaves of the aroeira plant (Schinus terebinthifolius Raddi) on the in vivo growth of virulent and attenuated strains of this bacillus. The extract was tested at concentrations of 2000, 1500, 1000, 500, 250, 100 and 10 µg/dL for 48 hours. The first four concentrations inhibited bacterial growth, producing halos of decreasing diameters. No antibacterial effect was found with the remaining concentrations. These results show that bacterial growth was inhibited by an extract of Schinus terebinthifolius Raddi at the aforementioned concentrations.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


Weed Science ◽  
1987 ◽  
Vol 35 (4) ◽  
pp. 564-567 ◽  
Author(s):  
Dennis R. Cosgrove ◽  
Michael Barrett

The effects of weed control measures in established alfalfa (Medicago sativaL.) on forage yield and quality were investigated at three sites with varying alfalfa densities and weed populations. Herbicide treatments were 0.56 and 1.12 kg/ha metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] applied in fall or spring, respectively, 1.68 kg/ha pronamide [3,5-dichloro (N-1,1-dimethyl-2-propynyl)benzamide] applied in fall, and combinations of these treatments. First-harvest forage yields (weeds plus alfalfa) were either reduced or unchanged by herbicide treatments. Total forage yield was not altered by the herbicide treatments, but first-harvest and total alfalfa yield as well as first-harvest forage protein content were increased by several treatments, depending on stand density and weed pressure. Little effect was observed on in vitro digestible dry matter or acid detergent fiber content.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
The Anh Luu ◽  
Quyet Tien Phi ◽  
Thi Thu Hang Nguyen ◽  
Mai Van Dinh ◽  
Bich Ngoc Pham ◽  
...  

Abstract Background Fungal stem end rot disease of pitaya caused by Alternaria alternata is one of the most destructive diseases in Binh Thuan province, Vietnam. This study aimed to assess the antagonistic effects of some endophytic bacteria isolated from the weed plant (Echinochloa colonum) against A. alternata. Results A total of 19 endophytic bacteria were isolated and 5 of them presented in vitro antagonistic activity against A. alternata. Of five, strain EC80 significantly inhibited the pathogenic growth with a mean inhibition diameter of 11.88 ± 0.08 mm, while the other four (C79, EC83, EC90, and EC97) showed a weak inhibition. Interestingly, the combination of EC79 and EC80 reduced more biomass of pathogenic fungi than the single one did. EC79 showed positive results for amylase, indole acetic acid (IAA), and biofilm production, whereas EC80 presented positive capabilities for IAA and biofilm production and a negative one for amylase production. In addition, the combined filtrate of EC79 and EC80 presented non-antifungal activity on biocontrol tests in vitro, indicating that bacteria cells played a role in defending against the pathogen. Moreover, both isolates EC79 and EC80 significantly increased seedling biomass than the control. Conclusions The results suggest that those two strains in combination had the potential to be used as a biocontrol agent against A. alternata. More studies should be done in the future to evaluate their efficiency under the field conditions.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


Sign in / Sign up

Export Citation Format

Share Document