scholarly journals Antimicrobial susceptibility profile of enterobacteria isolated from wild grey-breasted parakeets (Pyrrhura griseipectus)

2021 ◽  
Vol 41 ◽  
Author(s):  
Antonio Jackson F. Beleza ◽  
William Cardoso Maciel ◽  
Arianne S. Carreira ◽  
Adson R. Marques ◽  
Fabio P. Nunes ◽  
...  

ABSTRACT: The grey-breasted parakeet (Pyrrhura griseipectus) is an endangered psittacine species that have been affected by illegal trade and deforestation. Currently, this endemic species is only found in three areas in Ceará state, in Brazil. This study aimed to investigate the frequency and diversity of Enterobacteriaceae in wild adult grey-breasted parakeets and determine their susceptibility to antimicrobial agents. Cloacal swab samples were collected from 27 individuals and environmental swabs (drag swabs) from five nests used by these birds. Twenty-seven strains from nine species of Enterobacteriaceae were recovered from cloacal swabs, and the most prevalent bacteria strains were Hafnia alvei (22%) and Pantoea agglomerans (22%). From environmental nest samples, seven strains from three bacterial species were isolated, being the P. agglomerans the most frequent species (100%). Twenty-two of the 27 isolates (81.4%) exhibited antibiotic resistance, varying from one to eight of the 12 antimicrobials commonly used. Resistance to amoxicillin was the most prevalent (70.4%), followed by azithromycin (22.2%) and ceftriaxone (18.5%). None of the strains were resistant to gentamicin, tobramycin, ciprofloxacin or tetracycline. The H. alvei was the main species presenting multidrug resistance, including resistance against meropenem, which is an important finding. These results could provide interesting information on the health of these endangered wild grey-breasted parakeets. They could also indicate that the obtained isolates are part of a group of bacteria that are typical components of the enteric microbiota of birds, which present elevated rates of resistance to amoxicillin.

2007 ◽  
Vol 70 (6) ◽  
pp. 1502-1506 ◽  
Author(s):  
RAFAEL JESÚS ASTORGA MÁRQUEZ ◽  
AURORA ECHEITA SALABERRIA ◽  
ALFONSO MALDONADO GARCÍA ◽  
SILVIA VALDEZATE JIMENEZ ◽  
ALFONSO CARBONERO MARTINEZ ◽  
...  

The prevalence of and the antibiotic resistance shown by Salmonella isolated from pigs in Andalusia (southern Spain) is reported. Salmonella enterica was recovered from 40 (33%) of 121 sampled herds, and a total of 65 isolates were serotyped. The most common Salmonella serotypes were Typhimurium and Rissen (30.7% each); others included Derby (9.2%), Brandenburg (9.2%), Newport (7.7%), Bredeney (4.6%), Anatum (3.0%), Hadar (1.5%), and Goldcoast (1.5%). One strain (1.5%) belonging to the monophasic variant of the Typhimurium serotype (Salmonella 4,5,12:i:−) was also detected. Definitive phage type (DT) 104b was the most common Typhimurium phage type isolated. These Salmonella strains were resistant to various antimicrobial agents, including tetracycline (84.6%), streptomycin (69.2%), neomycin (63.0%), sulfonamides (61.5%), ampicillin (53.8%), and amoxicillin (53.8%). All isolates were fully susceptible to ceftriaxone, ciprofloxacin, and colistin. Thirty-nine strains (64%) resistant to four or more antimicrobial agents were defined as multidrug resistant. Multidrug resistance profiles were observed in Salmonella serotypes Typhimurium, Rissen, Brandenburg, Bredeney, a monophasic variant, Gold-coast, Hadar, and Anatum, with serotypes Typhimurium and Brandenburg showing the most complicated resistance patterns (resistant to ≥11 drugs).


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


2020 ◽  
Vol 17 (168) ◽  
pp. 20200105
Author(s):  
Eliott Jacopin ◽  
Sonja Lehtinen ◽  
Florence Débarre ◽  
François Blanquart

The evolution of multidrug antibiotic resistance in commensal bacteria is an important public health concern. Commensal bacteria such as Escherichia coli , Streptococcus pneumoniae or Staphylococcus aureus , are also opportunistic pathogens causing a large fraction of the community-acquired and hospital-acquired bacterial infections. Multidrug resistance (MDR) makes these infections harder to treat with antibiotics and may thus cause substantial additional morbidity and mortality. Here, we develop an evolutionary epidemiology model to identify the factors favouring the evolution of MDR in commensal bacteria. The model describes the evolution of antibiotic resistance in a commensal bacterial species evolving in a host population subjected to multiple antibiotic treatments. We combine statistical analysis of a large number of simulations and mathematical analysis to understand the model behaviour. We find that MDR evolves more readily when it is less costly than expected from the combinations of single resistances (positive epistasis). MDR frequently evolves when bacteria are in contact with multiple drugs prescribed in the host population, even if individual hosts are only treated with a single drug at a time. MDR is favoured when the host population is structured in different classes that vary in their rates of antibiotic treatment. However, under most circumstances, recombination between loci involved in resistance does not meaningfully affect the equilibrium frequency of MDR. Together, these results suggest that MDR is a frequent evolutionary outcome in commensal bacteria that encounter the variety of antibiotics prescribed in the host population. A better characterization of the variability in antibiotic use across the host population (e.g. across age classes or geographical location) would help predict which MDR genotypes will most readily evolve.


2009 ◽  
Vol 53 (6) ◽  
pp. 2450-2454 ◽  
Author(s):  
Inácio Mandomando ◽  
Dinis Jaintilal ◽  
Maria J. Pons ◽  
Xavier Vallès ◽  
Mateu Espasa ◽  
...  

ABSTRACT The antimicrobial susceptibility and mechanisms of resistance of 109 Shigella and 40 Salmonella isolates from children with diarrhea in southern Mozambique were assessed. The susceptibility to seven antimicrobial agents was tested by disk diffusion, and mechanisms of resistance were searched by PCR or colorimetric method. A high proportion of Shigella isolates were resistant to chloramphenicol (Chl) (52%), ampicillin (Amp) (56%), tetracycline (Tet) (66%), and trimethoprim-sulfamethoxazole (Sxt) (84%). Sixty-five percent of the isolates were multidrug resistant. Shigella flexneri isolates were more resistant than those of Shigella sonnei to Amp (66% versus 0.0%, P < 0.001) and Chl (61% versus 0.0%, P < 0.001), whereas S. sonnei isolates presented higher resistance to Tet than S. flexneri isolates (93% versus 64%, P = 0.02). Resistance among Salmonella isolates was as follows: Tet and Chl, 15% each; Sxt, 18%; and Amp, 25%. Only 3% of Salmonella isolates were resistant to nalidixic acid (Nal), and none to ciprofloxacin or ceftriaxone (Cro). Among Salmonella isolates, multiresistance was found in 23%. Among Shigella isolates, antibiotic resistance was related mainly to the presence of oxa-1-like β-lactamases for Amp, dfrA1 genes for Sxt, tetB genes for Tet, and Chl acetyltransferase (CAT) activity for Chl. Among Salmonella isolates, resistance was conferred by tem-like β-lactamases for Amp, floR genes and CAT activity for Chl, tetA genes for Tet, and dfrA1 genes for Sxt. Our data show that Shigella isolates are resistant mostly to the most available, inexpensive antibiotics by various molecular mechanisms but remain susceptible to ciprofloxacin, Cro, and Nal, which is the first line for empirical treatment of shigellosis in the country.


2006 ◽  
Vol 27 (7) ◽  
pp. 748-753 ◽  
Author(s):  
Jaffar A. Al-Tawfiq

Objective.To study the pattern of antibiotic resistance amongEscherichia coliand the trend in resistance during a 6-year period in a Saudi Arabian hospital.Design.Retrospective in vitro surveillance study of the antibiotic susceptibility pattern amongE. coliisolates recovered from outpatients and from inpatients.Setting.A general hospital in Saudi Arabia.Patients.All patients with a culture positive forE. coliduring a 6-year study period.Results.A statistically significant increase in antibiotic resistance was observed among outpatient and inpatient isolates ofE, coli.Inpatient isolates were more likely to be resistant to antimicrobial agents. Among isolates from outpatients, 50% were resistant to ampicillin, 33% were resistant to trimethoprim-sulfamethoxazole (TMP-SMZ), and 14% were resistant to ciprofloxacin. Among isolates from inpatients, 63% were resistant to ampicillin, 44% were resistant to TMP-SMZ, and 33% were resistant to ciprofloxacin. There was a low rate of resistance to imipenem (0.3% of isolates), amikacin (2%), and nitrofurantoin (2.4%-6.5%). Resistance to ceftazidime was detected in 9% of outpatient isolates and 17% of inpatient isolates. Multidrug resistance was defined as resistance to 2 or more classes of antibiotics. Multidrug resistance was detected in 2.0%-28.1% of outpatient isolates and 7.4%-39.6% of inpatient isolates, depending on the combination of antimicrobials tested. More isolates were resistant to ampicillin plus TMP-SMZ than to any other combination of antimicrobials.Conclusion.The prevalence of antibiotic resistance among outpatient and inpatientE. coliisolates increased during the study period. The rates of antibiotic resistance were statistically significantly higher among inpatient isolates, compared with outpatient isolates. These findings call for wiser use of antibiotics and continued surveillance of antibiotic resistance.


2015 ◽  
Vol 78 (5) ◽  
pp. 1003-1006 ◽  
Author(s):  
EMIL TÎRZIU ◽  
ROMEU LAZĂR ◽  
CLAUDIA SALA ◽  
ILEANA NICHITA ◽  
ADRIANA MORAR ◽  
...  

The purpose of this study was to investigate the occurrence of Salmonella in raw chicken meat samples collected at the Romanian seaside and to evaluate the antimicrobial susceptibility of the isolates. In 2012, 317 chicken meat samples from slaughterhouses (n = 289) and retail markets (n = 28) were evaluated. Overall, 13.2% (42) of the samples contained Salmonella; 12.8% (37) and 17.8% (5) from the chicken carcasses at slaughterhouses and the fresh meat from retail markets, respectively. Eight serotypes of Salmonella enterica subsp. enterica were identified: Infantis (18 isolates), Bredeney (7), Virchow (6), Djugu (4), Grampian (4), Brandenburg (1), Derby (1), and Ruzizi (1). The isolates were resistant to tetracycline (66.6% of isolates), nalidixic acid (64.3%), sulfamethoxazole (64.3%), ciprofloxacin (61.9%), streptomycin (59.5%), trimethoprim (33.3%), ampicillin (9.5%), chloramphenicol (7.1%), and gentamicin (2.4%). No resistance was found to cefotaxime and ceftazidime. Thirty (71.4%) of the 42 tested isolates had multidrug resistance patterns to at least two antimicrobials. This survey highlighted a multidrug-resistant Salmonella contamination rate in raw chicken meat in this area of Romania, which can seriously threaten human health.


1994 ◽  
Vol 7 (3) ◽  
pp. 346-356 ◽  
Author(s):  
J L Watts ◽  
R J Yancey

Veterinary diagnostic microbiology is a unique specialty within microbiology. Although isolation and identification techniques are similar to those used for human pathogens, many veterinary pathogens require unique cultivation or identification procedures. Commercial identification systems provide rapid, accurate identification of human pathogens. However, the accuracy of these systems with veterinary pathogens varies widely depending on the bacterial species and the host animal from which it was isolated. Increased numbers of veterinary strains or species in the data bases of the various systems would improve their accuracy. Current procedures and interpretive criteria used for antimicrobial susceptibility testing of veterinary pathogens are based on guidelines used for human pathogens. The validity of these guidelines for use with veterinary pathogens has not been established. As with fastidious human pathogens, standardized methodologies and quality control isolates are needed for tests of organisms such as Actinobacillus pleuropneumoniae and Haemophilus somnus. Furthermore, interpretive criteria for veterinary antimicrobial agents based on the MIC for veterinary pathogens, the pharmacokinetics of the antimicrobial agent in the host animal, and in vivo efficacy of the antimicrobial agent are needed. This article reviews both the commercial identification systems evaluated with veterinary pathogens and current methods for performing and interpreting antimicrobial susceptibility tests with veterinary pathogens. Recommendations for future improvements in both areas are discussed.


2006 ◽  
Vol 27 (7) ◽  
pp. 748-753 ◽  
Author(s):  
Jaffar A. Al-Tawfiq

Objective.To study the pattern of antibiotic resistance amongEscherichia coliand the trend in resistance during a 6-year period in a Saudi Arabian hospital.Design.Retrospective in vitro surveillance study of the antibiotic susceptibility pattern amongE. coliisolates recovered from outpatients and from inpatients.Setting.A general hospital in Saudi Arabia.Patients.All patients with a culture positive forE. coliduring a 6-year study period.Results.A statistically significant increase in antibiotic resistance was observed among outpatient and inpatient isolates ofE, coli.Inpatient isolates were more likely to be resistant to antimicrobial agents. Among isolates from outpatients, 50% were resistant to ampicillin, 33% were resistant to trimethoprim-sulfamethoxazole (TMP-SMZ), and 14% were resistant to ciprofloxacin. Among isolates from inpatients, 63% were resistant to ampicillin, 44% were resistant to TMP-SMZ, and 33% were resistant to ciprofloxacin. There was a low rate of resistance to imipenem (0.3% of isolates), amikacin (2%), and nitrofurantoin (2.4%-6.5%). Resistance to ceftazidime was detected in 9% of outpatient isolates and 17% of inpatient isolates. Multidrug resistance was defined as resistance to 2 or more classes of antibiotics. Multidrug resistance was detected in 2.0%-28.1% of outpatient isolates and 7.4%-39.6% of inpatient isolates, depending on the combination of antimicrobials tested. More isolates were resistant to ampicillin plus TMP-SMZ than to any other combination of antimicrobials.Conclusion.The prevalence of antibiotic resistance among outpatient and inpatientE. coliisolates increased during the study period. The rates of antibiotic resistance were statistically significantly higher among inpatient isolates, compared with outpatient isolates. These findings call for wiser use of antibiotics and continued surveillance of antibiotic resistance.


2021 ◽  
Vol 8 (12) ◽  
pp. 295
Author(s):  
Salem Djebala ◽  
Julien Evrard ◽  
Fabien Gregoire ◽  
Calixte Bayrou ◽  
Linde Gille ◽  
...  

The aim of this study was to identify the species and antimicrobial susceptibility of bacteria involved in parietal fibrinous peritonitis (PFP). We studied 156 peritoneal fluid samples from cows presenting PFP after caesarean section. Bacteria were cultured in selective media and their antimicrobial susceptibility was tested by disk diffusion assay. Bacteria were isolated in the majority (129/156; 83%) of samples. The majority (82/129; 63%) of positive samples contained one dominant species, while two or more species were cultured in 47/129 (36%) samples. Trueperella pyogenes (T. Pyogenes) (107 strains) was the most identified species, followed by Escherichia coli (E. coli) (38 strains), Proteus mirabilis (P. mirabilis) (6 strains), and Clostridium perfringens (C. perfringens) (6 strains). Several other species were sporadically identified. Antimicrobial susceptibility was tested in 59/185 strains, predominantly E. coli (38 strains) and P. mirabilis (6 strains). Antibiotic resistance, including resistance to molecules of critical importance, was commonly observed; strains were classified as weakly drug resistant (22/59; 37%), multidrug resistant (24/59; 41%), extensively drug resistant (12/59; 20%), or pan-drug resistant (1/59; 2%). In conclusion, extensive antibiotic resistance in the isolated germs might contribute to treatment failure. Ideally, antimicrobial therapy of PFP should be based upon bacterial culture and susceptibility testing.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Geresu Minda Asfaw ◽  
Regassa Shimelis

Escherichia coli O157 : H7 (E. coli O157 : H7) has been found to be the major cause of food-borne diseases and a serious public health problem in the world, with an increasing concern for the emergence and spread of antimicrobial-resistant strains. Hitherto, little is known about the carriage of E. coli O157 : H7 and its antimicrobial susceptibility profile in the food of animal origin in Ethiopia. This study aimed to determine the occurrence and multidrug resistance profile of E. coli O157 : H7 from food of animal origin at different catering establishments in the selected study settings of Arsi Zone. One hundred ninety-two animal origin food items, namely, raw/minced meat (locally known as “Kitfo,” “Kurt,” and “Dulet”), raw milk, egg sandwich, and cream cake samples were collected and processed for microbiological detection of E. coli O157 : H7. Out of 192 samples, 2.1% (4/192) were positive for E. coli O157 : H7. Two E. coli O157 : H7 isolates were obtained from “Dulet” (6.3%) followed by “Kurt” (3.1%, 1/32) and raw milk (3.1%, 1/32), whereas no isolate was obtained from “Kitfo,” egg sandwich, and cream cake samples. Of the 4 E. coli O157 : H7 isolates subjected to 10 panels of antimicrobial discs, 3 (75%) were highly resistant to kanamycin, streptomycin, and nitrofurantoin. Besides, all the isolates displayed multidrug resistance phenotypes, 3 to 5 antimicrobial resistance, amid kanamycin, streptomycin, nitrofurantoin, tetracycline, and chloramphenicol. The occurrence of multidrug-resistant E. coli O157 : H7 isolates from foods of animal origin sampled from different catering establishments reveals that the general sanitary condition of the catering establishments, utensils used, and personnel hygienic practices did not comply with the recommended standards. Thus, this finding calls for urgent attention toward appropriate controls and good hygienic practices in different catering establishments dealing with consuming raw/undercooked foods of animal origin.


Sign in / Sign up

Export Citation Format

Share Document