Salmonella in Raw Chicken Meat from the Romanian Seaside: Frequency of Isolation and Antibiotic Resistance

2015 ◽  
Vol 78 (5) ◽  
pp. 1003-1006 ◽  
Author(s):  
EMIL TÎRZIU ◽  
ROMEU LAZĂR ◽  
CLAUDIA SALA ◽  
ILEANA NICHITA ◽  
ADRIANA MORAR ◽  
...  

The purpose of this study was to investigate the occurrence of Salmonella in raw chicken meat samples collected at the Romanian seaside and to evaluate the antimicrobial susceptibility of the isolates. In 2012, 317 chicken meat samples from slaughterhouses (n = 289) and retail markets (n = 28) were evaluated. Overall, 13.2% (42) of the samples contained Salmonella; 12.8% (37) and 17.8% (5) from the chicken carcasses at slaughterhouses and the fresh meat from retail markets, respectively. Eight serotypes of Salmonella enterica subsp. enterica were identified: Infantis (18 isolates), Bredeney (7), Virchow (6), Djugu (4), Grampian (4), Brandenburg (1), Derby (1), and Ruzizi (1). The isolates were resistant to tetracycline (66.6% of isolates), nalidixic acid (64.3%), sulfamethoxazole (64.3%), ciprofloxacin (61.9%), streptomycin (59.5%), trimethoprim (33.3%), ampicillin (9.5%), chloramphenicol (7.1%), and gentamicin (2.4%). No resistance was found to cefotaxime and ceftazidime. Thirty (71.4%) of the 42 tested isolates had multidrug resistance patterns to at least two antimicrobials. This survey highlighted a multidrug-resistant Salmonella contamination rate in raw chicken meat in this area of Romania, which can seriously threaten human health.

2021 ◽  
Vol 5 (1) ◽  
pp. 19-26
Author(s):  
Bidyut Matubber ◽  
Farzana Islam Rume ◽  
Mohammad Enamul Hoque Kayesh ◽  
Mohammad Mahfuzur Rahman ◽  
Mohammad Rohul Amin ◽  
...  

The presence of antibiotic residue in chicken and animal meats is a serious threat to human health due to its harmful effects. This study aimed at identifying the antibiotic resistance patterns of the isolates as well as antibiotic residues in chicken, cattle, buffalo and goat meats in different southern districts of Bangladesh. A total of 205 meat samples, including 70 chicken meat, 60 cattle meat, 50 buffalo meat and 25 goat meat were aseptically collected and analysed for the detection of antibiotic residues by thin layer chromatography and the isolates obtained from these samples were subjected to antibiogram study against 16 commonly used antibiotics. The isolates found in this study were Staphylococcus spp., Streptococcus spp., Escherichia coli, and Salmonella spp. and their prevalence were 37.5% (77/205), 22.1% (48/205), 29.7% (61/205), 8.7% (19/205), respectively. The isolates showed different degrees of sensitivity to the antibiotics used in the study. The most resistant phenotype was against cefradine, amoxicillin, penicillin, oxytetracycline, erythromycin, and enrofloxacin. 18.5% (38/205) meat samples were found to be positive for antibiotic residues and the highest prevalence was observed in chicken meat compared to other meat types. Overall, the findings of the study suggest that it is important to take controlling measures for the emergence of antibiotic resistance and also for ensuring healthy meats for human consumption. Asian Australas. J. Food Saf. Secur. 2021, 5 (1), 19-26


2007 ◽  
Vol 70 (6) ◽  
pp. 1502-1506 ◽  
Author(s):  
RAFAEL JESÚS ASTORGA MÁRQUEZ ◽  
AURORA ECHEITA SALABERRIA ◽  
ALFONSO MALDONADO GARCÍA ◽  
SILVIA VALDEZATE JIMENEZ ◽  
ALFONSO CARBONERO MARTINEZ ◽  
...  

The prevalence of and the antibiotic resistance shown by Salmonella isolated from pigs in Andalusia (southern Spain) is reported. Salmonella enterica was recovered from 40 (33%) of 121 sampled herds, and a total of 65 isolates were serotyped. The most common Salmonella serotypes were Typhimurium and Rissen (30.7% each); others included Derby (9.2%), Brandenburg (9.2%), Newport (7.7%), Bredeney (4.6%), Anatum (3.0%), Hadar (1.5%), and Goldcoast (1.5%). One strain (1.5%) belonging to the monophasic variant of the Typhimurium serotype (Salmonella 4,5,12:i:−) was also detected. Definitive phage type (DT) 104b was the most common Typhimurium phage type isolated. These Salmonella strains were resistant to various antimicrobial agents, including tetracycline (84.6%), streptomycin (69.2%), neomycin (63.0%), sulfonamides (61.5%), ampicillin (53.8%), and amoxicillin (53.8%). All isolates were fully susceptible to ceftriaxone, ciprofloxacin, and colistin. Thirty-nine strains (64%) resistant to four or more antimicrobial agents were defined as multidrug resistant. Multidrug resistance profiles were observed in Salmonella serotypes Typhimurium, Rissen, Brandenburg, Bredeney, a monophasic variant, Gold-coast, Hadar, and Anatum, with serotypes Typhimurium and Brandenburg showing the most complicated resistance patterns (resistant to ≥11 drugs).


2020 ◽  
Vol 71 (3) ◽  
pp. 2291
Author(s):  
S. SAHIN

In this study, the occurrence of the ciprofloxacin-resistant (CR) Escherichia coli in chicken meat was determined, and their clonal relations were investigated by using pulsed-field gel electrophoresis (PFGE). Antimicrobial resistance patterns of E. coli isolates were determined by using disc diffusion assay, and minimum inhibitory concentration of ciprofloxacin was determined by E-test. Plasmid-mediated quinolone resistance (PMQR) and extended spectrum beta-lactamase (ESBL) resistance genes were also screened through polymerase chain reactions. Sixty chicken meat samples were collected from different supermarkets and butchers in Sivas, Turkey. CR E. coli strains were determined in 59 (98.3%) chicken meat samples. By analyzing PFGE fingerprint data, 34 different pulsotypes were determined. All E. coli strains were found to be resistant to nalidixic acid, enrofloxacin, and norfloxacin. In addition, isolates were resistant to levofloxacin (40.7%), ampicillin (94.9%), trimethoprim-sulfamethoxazole (76.3%), tetracycline (69.5%), and chloramphenicol (44.1%). However, isolates were susceptible to imipenem and colistin. In this study, 81.4% of CR E. coli isolates were observed to have a multidrug-resistant profile, which is defined as resistance to three or more classes of antibiotics. Through phenotypic confirmation tests, five isolates (8.3%) were determined to be ESBL-producing. The PMQR genes were not determined in any of the isolates. Two isolates (3.4%) possessed the blaCTX-M and blaCMY-2 genes, and 40 isolates (67.8%) had the blaTEM gene. Taken together, retail raw chicken meat is highly contaminated with CR E. coli. However, these isolates are not found to be carriers of the PMQR genes, indicating a low public health problem.


2014 ◽  
Vol 143 (5) ◽  
pp. 997-1003 ◽  
Author(s):  
S. M. ABD-ELGHANY ◽  
K. I. SALLAM ◽  
A. ABD-ELKHALEK ◽  
T. TAMURA

SUMMARYThis study was undertaken to survey the presence ofSalmonellain 200 chicken samples collected from Mansoura, Egypt.Salmonellawas detected in 16% (8/50), 28% (14/50), 32% (16/50) and 60% (30/50) of whole chicken carcasses, drumsticks, livers and gizzards, respectively, with an overall prevalence of 34% (68/200) among all samples. One hundred and sixty-six isolates were identified biochemically asSalmonella, and confirmed genetically by PCR, based on the presence ofinvAandstngenes. ThespvC gene, however, was detected in only 25·3% (42/166) of the isolates. Isolates were serotyped asSalmonellaEnteritidis (37·3%),S.Typhimurium (30·1%),S.Kentucky (10·8%),S.Muenster (8·4%),S.Virchow (4·8%),S.Anatum (4·8%),S.Haifa (1·2%), and four were non-typable. Antimicrobial susceptibility tests of theSalmonellaisolates revealed that 100% were resistant to each of erythromycin, penicillin, and amoxicillin, while 98·8%, 96·4%, 95·2%, and 91·6% were resistant to nalidixic acid, sulphamethoxazole, oxytetracycline, and ampicillin, respectively. Multidrug resistance was evident for 92·8% of the isolates. The high contamination level of chicken meat with multidrug-resistant Salmonellacan constitute a problem for public health.


2020 ◽  
Vol 20 (2) ◽  
pp. 160-166
Author(s):  
Seyedeh Hanieh Eshaghi Zadeh ◽  
Hossein Fahimi ◽  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal

Background: Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. Objective: The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. Methods: A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). Results: The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). Conclusion: The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


2021 ◽  
Vol 41 ◽  
Author(s):  
Antonio Jackson F. Beleza ◽  
William Cardoso Maciel ◽  
Arianne S. Carreira ◽  
Adson R. Marques ◽  
Fabio P. Nunes ◽  
...  

ABSTRACT: The grey-breasted parakeet (Pyrrhura griseipectus) is an endangered psittacine species that have been affected by illegal trade and deforestation. Currently, this endemic species is only found in three areas in Ceará state, in Brazil. This study aimed to investigate the frequency and diversity of Enterobacteriaceae in wild adult grey-breasted parakeets and determine their susceptibility to antimicrobial agents. Cloacal swab samples were collected from 27 individuals and environmental swabs (drag swabs) from five nests used by these birds. Twenty-seven strains from nine species of Enterobacteriaceae were recovered from cloacal swabs, and the most prevalent bacteria strains were Hafnia alvei (22%) and Pantoea agglomerans (22%). From environmental nest samples, seven strains from three bacterial species were isolated, being the P. agglomerans the most frequent species (100%). Twenty-two of the 27 isolates (81.4%) exhibited antibiotic resistance, varying from one to eight of the 12 antimicrobials commonly used. Resistance to amoxicillin was the most prevalent (70.4%), followed by azithromycin (22.2%) and ceftriaxone (18.5%). None of the strains were resistant to gentamicin, tobramycin, ciprofloxacin or tetracycline. The H. alvei was the main species presenting multidrug resistance, including resistance against meropenem, which is an important finding. These results could provide interesting information on the health of these endangered wild grey-breasted parakeets. They could also indicate that the obtained isolates are part of a group of bacteria that are typical components of the enteric microbiota of birds, which present elevated rates of resistance to amoxicillin.


Author(s):  
Meesha Singh ◽  
Rupsha Karmakar ◽  
Sayak Ganguli ◽  
Mahashweta Mitra Ghosh

Aims: This study aims at comparative identification of antibiotic resistance patterns in bacteria isolated from samples collected from rural environment (LS) and urban environments (SS). Metagenomic profiling gave us insights into the microbial abundance of the two samples. This study focused on culture-based methods for complete identification of antibiotic resistant isolates and estimation of comparative antibiotic resistance among the two samples. Study Design: Untreated medical waste and anthropogenic waste disposal can lead to the propagation of different antibiotic resistant strains in wastewater environments both in urban and rural set ups which provide an insight towards this study approach mentioned in the methodology segment. Place and Duration of Study: Sewer system of a medical facility located in Purulia, India was the collection site for liquid sludge. Solid sludge and associated wastewater were collected in vicinity of a large urban medical facility from central Kolkata, India. Methodology: Physico-chemical properties were analyzed followed by microbiological and biochemical characterization. The antibiotic resistance patterns were determined by Kirby-Bauer disc diffusion assay. Potent multidrug resistant isolates were identified using 16srRNA gene amplification followed by Phylogenetic profiling, using CLC Genomics workbench. Results: We observed maximum resistance in an E. coli isolate which was resistant up to 22 antibiotics. Combined data for resistance from urban and rural samples were found to exhibit 83.9% resistance to beta lactams, 85.7% to macrolides, 44.2% to fluoroquinolones, 50% to glycopeptides and cephalosporins, 35.7 % to carbapenems and sulfonamides, 28.5 % to tetracycline, and 23.8 % to aminoglycosides. Conclusion: The high prevalence of antibiotic-resistant bacteria harbouring diverse resistance traits across samples indicated towards probable horizontal gene transfer across environmental niches. This study can prove to be useful to understand and map the patterns of resistance and stringently apply the counter measures related to public health practices.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammed Alaidarous ◽  
Meshal Alanazi ◽  
Ahmed Abdel-Hadi

This study highlights the level of microbial contamination of waterpipe components in selected area of Saudi Arabia and the resistance of selected bacteria to different antibiotics was determined. A series of biochemical tests, microscopic examination, and screening on Vitek 2 compact (bioMérieux Inc., USA) system were done to characterize the bacterial isolates. Out of 132 samples investigated, 7 mouthpiece samples and 48 water bowl samples showed positivity on culture. The percentage of contamination rate was higher in water bowl (69.69%) than in mouthpieces (10.6%) for all selected areas. A total of 55 bacterial isolates were identified which included Gram-negative (28) and Gram-positive (27) bacteria. Antimicrobial susceptibility data showed more resistance to bacteria isolated from water bowl than bacteria isolated from mouthpiece. In addition, one isolate which was confirmed as methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae was resistant to antibiotics which are commonly used to treat pneumonia. Water bowl of waterpipe instrument is significantly contaminated with different bacterial pathogens including multidrug-resistant and pneumonia causing bacteria, which are a real health concern among waterpipe smokers. The presented data could assist public health professionals to raise the concerns regarding cleaning practices of waterpipe components and highlights the risk posed among the waterpipe smokers.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Danielle Barrios Steed ◽  
Tiffany Wang ◽  
Divyanshu Raheja ◽  
Alex D. Waldman ◽  
Ahmed Babiker ◽  
...  

ABSTRACT Fecal microbiota transplantation (FMT) has promising applications in reducing multidrug-resistant organism (MDRO) colonization and antibiotic resistance (AR) gene abundance. However, data on clinical microbiology results after FMT are limited. We examined the changes in antimicrobial susceptibility profiles in patients with Gram-negative infections in the year before and the year after treatment with FMT for recurrent Clostridioides difficile infection (RCDI). We also examined whether a history of FMT changed health care provider behavior with respect to culture ordering and antibiotic prescription. Medical records for RCDI patients who underwent FMT at Emory University between July 2012 and March 2017 were reviewed retrospectively. FMT-treated patients with Gram-negative culture data in the 1-year period preceding and the 1-year period following FMT were included. Demographic and clinical data were abstracted, including CDI history, frequency of Gram-negative cultures, microbiological results, and antibiotic prescription in response to positive cultures in the period following FMT. Twelve patients were included in this case series. We pooled data from infections at all body sites and found a decrease in the number of total and Gram-negative cultures post-FMT. We compared susceptibility profiles across taxa given the potential for horizontal transmission of AR elements and observed increased susceptibility to nitrofurantoin, trimethoprim-sulfamethoxazole, and the aminoglycosides. FMT did not drastically influence health care provider ordering of bacterial cultures or antibiotic prescribing practices. We observed a reduction in Gram-negative cultures and a trend toward increased antimicrobial susceptibility. This study supports further investigation of FMT as a means of improving antimicrobial susceptibility. IMPORTANCE Fecal microbiota transplantation (FMT), which is highly efficacious in treating recurrent C. difficile infection (RCDI), has a promising application in decolonization of multidrug-resistant organisms, reduction of antibiotic resistance gene abundance, and restoration of healthy intestinal microbiota. However, data representing clinical microbiology results after FMT are limited. We sought to characterize the differences in culture positivity and antimicrobial susceptibility profiles in patients with Gram-negative infections in the year before and the year after FMT for RCDI. Drawing on prior studies that had demonstrated the success of FMT in eradicating extraintestinal infections and the occurrence of patient-level interspecies transfer of resistance elements, we employed an agnostic analytic approach of reviewing the data irrespective of body site or species. In a small RCDI population, we observed an improvement in the antimicrobial susceptibility profile of Gram-negative bacteria following FMT, which supports further study of FMT as a strategy to combat antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document