scholarly journals EFFECTIVENESS OF WATER-RETAINING POLYMER AS FIRE RETARDANT IN INDIRECT USE

2020 ◽  
Vol 44 ◽  
Author(s):  
Daiane Cristina de Lima ◽  
Adilson Pacheco de Souza ◽  
Josiane Fernandes Keffer ◽  
Luana Bouvié ◽  
Charles Campoe Martim ◽  
...  

ABSTRACT The use of fire retardants increases efficiency in fighting forest fires, however, it still presents uncertainties regarding environmental contamination, recommendations for preparation, and it lack of regulation in Brazil. In this scenario, alternative products such as water-retaining polymers, that can reduce the rapid evaporation of water, can also have positive effects in terms of reducing fire behavior. Efficiency and ways of using the water-retaining polymer as a short-duration fire retardant (indirect combat) in controlled burns in eucalyptus plantations were evaluated. Five concentrations (dilution in water), three volumes of spray solution, and two post-application times on the combustible material available in the area were evaluated. Controlled burns were conducted downwind, between 10 am and 2 pm, during dry season in the region, with micrometeorological and fire behavior assessments (fire propagation speed and length of flames). Increased spray volume and concentration of water-retaining polymer led to reductions in the spread of fire. In eucalyptus combustible material, the water-retaining polymer can be used as a fire retardant of short duration (effective up to two hours after application), considering a spray volume of 2.0 L m-2 and concentration of 0.0060% (diluted in water).

2018 ◽  
Vol 42 (3) ◽  
Author(s):  
Fillipe Tamiozzo Pereira Torres ◽  
Gumercindo Souza Lima ◽  
Bráulio Furtado Alvares

ABSTRACT The objective of this study was to evaluate the performance of different fire hazard indices (FWI, FMA, FMA+, Telicyn, Nesterov, P-EVAP and EVAP/P), taking into account the fire behavior variables and the susceptibility to fire expressed by the moisture of the combustible material. For this purpose, controlled burnings were performed at different times and information was recorded in relation to the meteorological conditions, characteristics of the combustible material and fire behavior variables. In general, all the indices presented significant correlations with both the moisture of the combustible material and the behavior of the fire. However, in general, a higher linear correlation of components of the Canadian Fire Weather Index (FWI) system was observed in predicting fire behavior and EVAP / P index in fuel moisture. The consistency of the correlations between the various indices and the analyzed variables makes the methodology possible to be used in any place, facilitating the decision making in regions where records of occurrences of forest fires are absent or unreliable.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 932
Author(s):  
Kamila Sałasińska ◽  
Maciej Celiński ◽  
Kamila Mizera ◽  
Mateusz Barczewski ◽  
Paweł Kozikowski ◽  
...  

In this paper, the fire behavior of unsaturated polyester resin (UP) modified with L-histidinium dihydrogen phosphate-phosphoric acid (LHP), being a novel intumescent fire retardant (IFR), was investigated. Thermal and thermomechanical properties of the UP with different amounts of LHP (from 10 to 30 wt. %) were determined by thermogravimetric analysis (TG) as well as dynamic mechanical thermal analysis (DMTA). Reaction to small flames was studied by horizontal burning (HB) test, while fire behavior and smoke emission were investigated with the cone calorimeter (CC) and smoke density chamber. Further, the analysis of volatile products was conducted (TGA/FT-IR). It was observed that the addition of LHP resulted in the formation of carbonaceous char inhibiting the thermal decomposition, burning rate and smoke emission. The most promising results were obtained for the UP containing 30 wt. % of LHP, for which the highest reduction in maximum values of heat release rate (200 kW/m2) and total smoke release (3535 m2/m2) compared to unmodified polymer (792 kW/m2 and 6895 m2/m2) were recorded. However, some important disadvantage with respect to water resistance was observed.


2009 ◽  
Vol 2 (5) ◽  
pp. 446-455 ◽  
Author(s):  
K. Izran ◽  
A. Zaidon ◽  
A.M.A. Rashid ◽  
F. Abood ◽  
M.J. Saad ◽  
...  

2010 ◽  
Vol 15 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Dmitry Barovik ◽  
Valery Taranchuk

Adapted mathematical model for simulation of running crown forest fire propagation is considered. Simplifying assumptions, equations of the model, initial and boundary conditions, finite difference approximations are introduced. The results of computer modelling and the peculiarities of forest fire behaviour in heterogeneous forests are discussed.


Author(s):  
Adelaida Fanfarová ◽  
Ladislav Mariš

Abstract Currently the natural materials become popular building material for houses, buildings and recreational property. The risk of fires in residential timber construction or eco houses cannot be completely ruled out, therefore there is a need for proper and correct implementing preventive measures and application of all available solutions, which may reduce the risk of fire as far as possible, to slow down the combustion process, to protect the life of people, animals and also the building itself until arrival members of the Fire and Rescue Services. Fireproofing of combustible materials is a specific area of fire protection. For scientific research as well as for real-life practice, not only their structural and physical properties, but also fire-technical characteristics are really important. The present researchers mostly focus on fire-retardant treatment of wood that is why the authors of this contribution focused on a different combustible material. This research article presents the experimental testing and examination of the reaction to fire test of the selected thermal insulation of hemp fiber that was impregnated by the selected fire retardant in laboratory conditions.


2007 ◽  
Vol 88 (9) ◽  
pp. 1369-1382 ◽  
Author(s):  
Craig B. Clements ◽  
Shiyuan Zhong ◽  
Scott Goodrick ◽  
Ju Li ◽  
Brian E. Potter ◽  
...  

Grass fires, although not as intense as forest fires, present a major threat to life and property during periods of drought in the Great Plains of the United States. Recently, major wildland grass fires in Texas burned nearly 1.6 million acres and destroyed over 730 homes and 1320 other buildings. The fires resulted in the death of 19 people, an estimated loss of 10,000 head of livestock, and more than $628 million in damage, making the 2005/06 fire season the worst on record for the state of Texas. As an aid to fire management, various models have been developed to describe fire behavior. However, these models strongly emphasize fuels and fail to adequately consider the role of convective dynamics within the atmosphere and its interaction with the fire due to the lack of observational data. To fill this gap, an intensive field measurement campaign called FireFlux was conducted during February 2006 near Houston, Texas. The campaign employed a variety of instrument platforms to collect turbulence data at multiple levels within and immediately downwind of a 155 acre tall-grass prairie burn unit. This paper presents some first-time observations of atmospheric turbulent structures/fluxes associated with intense grass fires and provides a basis to further our understanding of the dynamics of grass fires and their interactions with the atmosphere.


2019 ◽  
Vol 28 (1) ◽  
pp. 4 ◽  
Author(s):  
Sandra H. Penman ◽  
Owen F. Price ◽  
Trent D. Penman ◽  
Ross A. Bradstock

The number of houses at risk from wildfire continues to increase around the world as populations continue to expand into fire-prone areas. Creating defensible space (managing fuels within a 30-m zone around a house) is a key strategy for mitigating risk, but there is a need to evaluate the key components of defensible space. This study examined house impact in 27 independent forest fires from New South Wales, Australia, between 2001 and 2009, comprising 309 houses destroyed or damaged and 618 unburnt houses. A range of spatial measures of vegetation, nearby buildings, waterbodies and topography were measured around each house. Principle Components Analysis and Generalised Additive Mixed Model analysis was used to derive the best and supported alternative models to explain the determinants of housing impact. The best model contained positive effects of vegetation touching the house and estimated Radiant Heat Flux and negative effects of distance to the nearest building and the number of nearby waterbodies on the probability of impact. The results suggest that risk could be effectively reduced by providing waterbodies, maintaining defensible space and ensuring separation between houses.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 180 ◽  
Author(s):  
Neeraj Mandlekar ◽  
Aurélie Cayla ◽  
François Rault ◽  
Stéphane Giraud ◽  
Fabien Salaün ◽  
...  

In this study, two different types of industrial lignin (i.e., lignosulphonate lignin (LL) and kraft lignin (DL)) were exploited as charring agents with phosphorus-based flame retardants for polyamide 11 (PA11). The effect of lignins on the thermal stability and fire behavior of PA11 combined with phosphinate additives (namely, aluminum phosphinate (AlP) and zinc phosphinate (ZnP)) has been studied by thermogravimetric analysis (TGA), UL 94 vertical flame spread, and cone calorimetry tests. Various blends of flame retarded PA11 were prepared by melt process using a twin-screw extruder. Thermogravimetric analyses showed that the LL containing ternary blends are able to provide higher thermal stability, as well as a developed char residue. The decomposition of the phosphinates led to the formation of phosphate compounds in the condensed phase, which promotes the formation of a stable char. Flammability tests showed that LL/ZnP ternary blends were able to achieve self-extinction and V-1 classification; the other formulations showed a strong melt dripping and higher burning. In addition to this, cone calorimetry results showed that the most enhanced behavior was found when 10 wt % of LL and AlP were combined, which strongly reduced PHRR (−74%) and THR (−22%), due to the interaction between LL and AlP, which not only promotes char formation but also confers the stability to char in the condensed phase.


2018 ◽  
Vol 209 ◽  
pp. 00021
Author(s):  
Valeriy Perminov ◽  
Victoria Marzaeva

The protection of buildings and structures in a community from destruction by forest fires is a very important concern. This paper addresses the development of a mathematical model for fires in the wildland-urban intermix. The forest fire is a very complicated phenomenon. At present, fire services can forecast the danger rating of, or the specific weather elements relating to, forest fire. There is need to understand and predict forest fire initiation, behavior and impact of fire on the buildings and constructions. This paper’s purposes are the improvement of knowledge on the fundamental physical mechanisms that control forest fire behavior. The mathematical modeling of forest fires actions on buildings and structures has been carried out to study the effects of fire intensity and wind speed on possibility of ignition of buildings.


Sign in / Sign up

Export Citation Format

Share Document