scholarly journals Neurocortical electrical activity tomography in chronic schizophrenics

2003 ◽  
Vol 61 (3B) ◽  
pp. 712-717 ◽  
Author(s):  
Heloisa Veiga ◽  
Andréa Deslandes ◽  
Mauricio Cagy ◽  
Adriana Fiszman ◽  
Roberto Airthon M. Piedade ◽  
...  

Functional imaging of brain electrical activity was performed in 25 chronic medicated schizophrenics and 40 controls, analyzing the classical frequency bands (delta, theta, alpha, and beta) of 19-channel EEG during resting state to identify brain regions with deviant activity of different functional significances, using LORETA (Low Resolution Tomography) and SPM99 (Statistical Parametric Mapping). Patients differed from controls due to an excess of slow activity comprising delta + theta frequency bands (inhibitory pattern) located at the right middle frontal gyrus, right inferior frontal gyrus, and right insula, as well as at the bilateral anterior cingulum with a left preponderance. The high temporal resolution of EEG enables the specification of the deviations not only as an excess or a deficit of brain electrical activity, but also as inhibitory (delta, theta), normal (alpha), and excitatory (beta) activities. These deviations point out to an impaired functional brain state consisting of inhibited frontal and prefrontal areas that may result in inadequate treatment of externally or internally generated information.

2021 ◽  
Author(s):  
Zhaoqi Zhang ◽  
Qiming Yuan ◽  
Zeping Liu ◽  
Man Zhang ◽  
Junjie Wu ◽  
...  

Abstract Writing sequences play an important role in handwriting of Chinese characters. However, little is known regarding the integral brain patterns and network mechanisms of processing Chinese character writing sequences. The present study decoded brain patterns during observing Chinese characters in motion by using multi-voxel pattern analysis (MVPA), meta-analytic decoding analysis, and extended unified structural equation model (euSEM). We found that perception of Chinese character writing sequence recruited brain regions not only for general motor schema processing, i.e., the right inferior frontal gyrus, shifting and inhibition functions, i.e., the right postcentral gyrus and bilateral pre-SMA/dACC, but also for sensorimotor functions specific for writing sequences. More importantly, these brain regions formed a cooperatively top-down brain network where information was transmitted from brain regions for general motor schema processing to those specific for writing sequences. These findings not only shed light on the neural mechanisms of Chinese character writing sequences, but also extend the hierarchical control model on motor schema processing.


2021 ◽  
Author(s):  
Mengxing Wang ◽  
Xiangyu Zheng ◽  
Zhaoxia Qin ◽  
Jun Ma ◽  
Xiaoxia Du

Abstract Background: Primary monosymptomatic nocturnal enuresis (PMNE) is a common disorder among school-age children. Previous research has suggested that the prefrontal cortex (PFC) is essential to maintain urine storage in bladder control. We hypothesized that children with PMNE have functional deficits in several brain regions, especially the PFC, during urine storage. In this work, we investigated 30 children with PMNE and 28 controls in a state of natural urine holding to evaluate dysfunction in the bladder control network by applying degree centrality (DC) analysis methods based on resting-state functional magnetic resonance imaging. And seed-based functional connectivity (FC) analysis was used to investigate whether the dysfunctional areas exhibited altered FC with other brain regions.Results: Compared with the typical healthy children, the children with PMNE showed increased DC in the right inferior frontal gyrus (IFG). Also, the right IFG showed increased connectivity with the left middle and inferior frontal gyri and the right precuneus extending to the cuneus in the children with PMNE.Conclusion: The children with PMNE showed abnormal neural activity during urine storage and exhibited increased DC in the right IFG and increased connectivity with the left PFC and right precuneus during urine storage. These results suggest that compensatory effects may be associated with the right IFG combined with the precuneus and left PFC working together to maintain high vigilance and improve micturition's inhibition function to preserve the state of urine holding in children with PMNE.


2020 ◽  
Vol 61 (10) ◽  
pp. 1388-1397
Author(s):  
Yi Cheng ◽  
Li Yan ◽  
Liqun Hu ◽  
Hongyun Wu ◽  
Xin Huang ◽  
...  

Background Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. Purpose To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. Material and Methods Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. Results DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients ( P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM ( P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions ( P < 0.05). Conclusion Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.


2005 ◽  
Vol 17 (9) ◽  
pp. 1367-1375 ◽  
Author(s):  
Marcel Brass ◽  
Markus Ullsperger ◽  
Thomas R. Knoesche ◽  
D. Yves von Cramon ◽  
Natalie A. Phillips

Cognitive control processes enable us to adjust our behavior to changing environmental demands. Although neuropsychological studies suggest that the critical cortical region for cognitive control is the prefrontal cortex, neuro-imaging studies have emphasized the interplay of prefrontal and parietal cortices. This raises the fundamental question about the different contributions of prefrontal and parietal areas in cognitive control. It was assumed that the prefrontal cortex biases processing in posterior brain regions. This assumption leads to the hypothesis that neural activity in the prefrontal cortex should precede parietal activity in cognitive control. The present study tested this assumption by combining results from functional magnetic resonance imaging (fMRI) providing high spatial resolution and event-related potentials (ERPs) to gain high temporal resolution. We collected ERP data using a modified task-switching paradigm. In this paradigm, a situation where the same task was indicated by two different cues was compared with a situation where two cues indicated different tasks. Only the latter condition required updating of the task set. Task-set updating was associated with a midline negative ERP deflection peaking around 470 msec. We placed dipoles in regions activated in a previous fMRI study that used the same paradigm (left inferior frontal junction, right inferior frontal gyrus, right parietal cortex) and fitted their directions and magnitudes to the ERP effect. The frontal dipoles contributed to the ERP effect earlier than the parietal dipole, providing support for the view that the prefrontal cortex is involved in updating of general task representations and biases relevant stimulus-response associations in the parietal cortex.


CNS Spectrums ◽  
2013 ◽  
Vol 21 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erwin Lemche ◽  
Simon A. Surguladze ◽  
Michael J. Brammer ◽  
Mary L. Phillips ◽  
Mauricio Sierra ◽  
...  

ObjectiveThe cerebral mechanisms of traits associated with depersonalization-derealization disorder (DPRD) remain poorly understood.MethodHappy and sad emotion expressions were presented to DPRD and non-referred control (NC) subjects in an implicit event-related functional magnetic resonance imaging (fMRI) design, and correlated with self report scales reflecting typical co-morbidities of DPRD: depression, dissociation, anxiety, somatization.ResultsSignificant differences between the slopes of the two groups were observed for somatization in the right temporal operculum (happy) and ventral striatum, bilaterally (sad). Discriminative regions for symptoms of depression were the right pulvinar (happy) and left amygdala (sad). For dissociation, discriminative regions were the left mesial inferior temporal gyrus (happy) and left supramarginal gyrus (sad). For state anxiety, discriminative regions were the left inferior frontal gyrus (happy) and parahippocampal gyrus (sad). For trait anxiety, discriminative regions were the right caudate head (happy) and left superior temporal gyrus (sad).DiscussionThe ascertained brain regions are in line with previous findings for the respective traits. The findings suggest separate brain systems for each trait.ConclusionOur results do not justify any bias for a certain nosological category in DPRD.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wanjun Zheng ◽  
Yuanping Tao ◽  
Yuzhen Li ◽  
Hang Ye ◽  
Jun Luo

Revenge is common in our daily lives, and people feel good when engaging in revenge behavior. However, revenge behavior is a complex process and remains somewhat of a puzzle of human behavior. Neuroimaging studies have revealed that revenge behaviors are associated with activation of a neural network containing the anterior cingulate cortex, ventral striatum, inferior frontal gyrus, and dorsolateral prefrontal cortex (DLPFC). Recent brain stimulation research using transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation has shown a causal relationship between brain regions and revenge behaviors, but the findings have been mixed. In the present study, we aimed to study whether stimulation in the DLPFC can change participants’ revenge behavior in conditions where participants’ wealth was taken away in different ways. We adapted the moonlighting game and designed a new paradigm. Our study revealed that revenge behavior increased following activation in the right DLPFC, suggesting that the right DLPFC plays an important role in overriding self-interest and retaliation. In addition, our results revealed that the right DLPFC is crucial in revenge behavior related to the motivation of invasion.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Monica Wagner ◽  
Silvia Ortiz-Mantilla ◽  
Mateusz Rusiniak ◽  
April A. Benasich ◽  
Valerie L. Shafer ◽  
...  

AbstractAcoustic structures associated with native-language phonological sequences are enhanced within auditory pathways for perception, although the underlying mechanisms are not well understood. To elucidate processes that facilitate perception, time–frequency (T–F) analyses of EEGs obtained from native speakers of English and Polish were conducted. Participants listened to same and different nonword pairs within counterbalanced attend and passive conditions. Nonwords contained the onsets /pt/, /pət/, /st/, and /sət/ that occur in both the Polish and English languages with the exception of /pt/, which never occurs in the English language in word onset. Measures of spectral power and inter-trial phase locking (ITPL) in the low gamma (LG) and theta-frequency bands were analyzed from two bilateral, auditory source-level channels, created through source localization modeling. Results revealed significantly larger spectral power in LG for the English listeners to the unfamiliar /pt/ onsets from the right hemisphere at early cortical stages, during the passive condition. Further, ITPL values revealed distinctive responses in high and low-theta to acoustic characteristics of the onsets, which were modulated by language exposure. These findings, language-specific processing in LG and acoustic-level and language-specific processing in theta, support the view that multi scale temporal processing in the LG and theta-frequency bands facilitates speech perception.


2008 ◽  
Vol 99 (4) ◽  
pp. 1836-1845 ◽  
Author(s):  
R. D. Seidler ◽  
D. C. Noll

The acquisition of new motor skills is dependent on task practice. In the case of motor transfer, learning can be facilitated by prior practice of a similar skill. Although a multitude of studies have investigated the brain regions contributing to skill acquisition, the neural bases associated with the savings seen at transfer have yet to be determined. In the current study, we used functional MRI to examine how brain activation differs during acquisition and transfer of a visuomotor adaptation task. Two groups of participants adapted manual aiming movements to three different rotations of the feedback display in a sequential fashion, with a return to baseline display conditions between each rotation. Subjects showed a savings in the rate of adaptation when they had prior adaptive experiences (i.e., positive transfer of learning). This savings was associated with a reduction in activity of brain regions typically recruited early in the adaptation process, including the right inferior frontal gyrus, primary motor cortex, inferior temporal gyrus, and the cerebellum (medial HIII). Moreover, although these regions exhibit activation that is correlated across subjects with the rate of acquisition, the degree of savings at transfer was correlated with activity in the right cingulate gyrus, left superior parietal lobule, right inferior parietal lobule, left middle occipital gyrus, and bilaterally in the cerebellum (HV/VI). The cerebellar activation was in the regions surrounding the posterior superior fissure, which is thought to be the site of storage for acquired internal models. Thus we found that motor transfer is associated with brain activation that typically characterizes late learning and storage. Transfer seems to involve retrieval of a previously formed motor memory, allowing the learner to move more quickly through the early stage of learning.


Sign in / Sign up

Export Citation Format

Share Document