scholarly journals Responses to climatic factors by foragers of Plebeia pugnax Moure (in litt.) (Apidae, Meliponinae)

2001 ◽  
Vol 61 (2) ◽  
pp. 191-196 ◽  
Author(s):  
S. D. HILÁRIO ◽  
V. L. IMPERATRIZ-FONSECA ◽  
A. de M. P. KLEINERT

Flight activity of Plebeia pugnax Moure (in litt.) was studied in six colonies coming from Cunha, SP, from July to October 1994. Twice a week, from 8:00 a.m. to 6:00 p.m., for 5 minutes every half-hour, all the bees entering and leaving the hives were counted. Six hundred counts were made and the materials that foragers carried were recorded. Data were analysed in relation to temperature, relative humidity, light intensity and day time. Foragers' flight activity was relatively constant in a wide range of temperature, from 22°C to 34°C. The minimum temperature for the beginning of flight activity was 14°C. Effective flight activity (when foragers of all colonies were leaving the hives) occurred at 15°C. These bees also flew within a wide range of relative humidity, from 30% to 100%, decreasing slowly after 50%. Flight activity increased as light intensity rose and it has also increased as the hours passed by, reaching a peak around midday and decreasing gradually afterwards. Pollen was collected all day long, while resin collection was relatively constant and debris transportation was slightly higher after 10:00 h. From all known Plebeia species, this one flew on the lowest temperature ever registered for this genus.

1960 ◽  
Vol 38 (3) ◽  
pp. 489-497 ◽  
Author(s):  
L. S. Wolfe ◽  
D. G. Peterson

Studies in the region of Baie Comeau, Quebec, from 1954 to 1956, showed that black flies were most active in the morning 1 to 2 hours after dawn and in the evening [Formula: see text] to 1 hour before sunset. Flight activity appeared to depend on light intensity if the temperature was not below 45° F, the wind velocity not above 2 m.p.h., and the relative humidity not below 50%. In the morning, activity was greatest at higher levels of light intensity, i.e., 20 ft-c, than in the evening, 5 ft-c. Activity increased before thunderstorms and rain and the increase appeared related more to the change in light intensity than to changes in atmospheric pressure or humidity. At night, black flies moved to resting places in the tops of the trees, probably because of the more suitable light intensity at the higher levels just before dark. Oviposition commenced in the late afternoon and continued until dark except on overcast days, when it commenced in early afternoon. Simulium (Simulium) venustum Say bit man mainly on the back of the neck.


2018 ◽  
Vol 14 (3) ◽  
pp. 117
Author(s):  
Indah Putri Januar Yustia ◽  
Aunu Rauf ◽  
Nina Maryana

<p><em>Tetragonula laeviceps</em> (Smith) is one of the most common species of stingless bees in Indonesia. However, only few publications available on the flight activity rhythms of the species. Research was conducted with the objectives to determine flight activity of <em>T. laeviceps</em> in relation to daily times and various weather elements. Three colonies of <em>T. laeviceps</em> were observed hourly for 5 minutes beginning at 06.00 a.m. until 06.00 p.m. Number of bees entering with pollen or resin, as well as exiting with waste were counted. Flight activity was significantly different (P &lt; 0.001) among times of day. The preferential times (acrophases) of flight activities occurred at afternoon (11 a.m. to 12 a.m.). Number of entrance and exit flights positively correlated (moderate) with temperature and light intensity, while negatively correlated (moderate) with relative humidity. </p>


2020 ◽  
Vol 17 (2) ◽  
pp. 155-164
Author(s):  
S Neupane ◽  
S Subedi

Population dynamics of lentil aphid Aphis craccivora (Hemiptera: Aphididae) was assessed in relation with climatic parameters at the research field of National Maize Research Program (NMRP), Rampur, Chitwan during winter season of two consecutive years 2016 to 2018. The experiment was organized in randomized complete block design consisting 20 lentil varieties with three replications. The crop was sown during last week of November in both the years. The daily meteorological parameters like maximum temperature (Tmax), minimum temperature (Tmin), relative humidity (RH) and rainfall (Rf) were recorded at the meteorological station located in NMRP, Rampur, Chitwan and then converted into weekly basis as the standard meteorological week (SMW) with correspondence to weekly population of aphid. The incidence of aphid was started from 2nd SMW of January (2 aphid/plant/10 cm apical twigs) during both experimentation years. Initially the population was low and gradually increased and reached to its peak (49 aphid/plant/10cm apical twigs) on 9th SMW i.e. first week of March with correspondence to weather parameters viz. maximum and minimum temperature (°C), relative humidity (%) and rainfall (mm) were 30.80, 15.34, 67.72 and 0, respectively over the years. The aphid population had significant positive correlation with Tmax (r= 0.94) while the Tmin showed highly significant correlation (r=0.99). The relative humidity (RH) had non significant negative correlation (r= -0.90) and rainfall (Rf) showed non significant negative impact (r= - 0.15) with aphid population. The regression model developed could explain 99% variation in aphid population in different cultivars of lentil. SAARC J. Agri., 17(2): 155-164 (2019)


2013 ◽  
Vol 726-731 ◽  
pp. 4248-4251 ◽  
Author(s):  
Guo Hong Lv ◽  
Guang Shen Zhou ◽  
Xiao Ying Wang

Litterfall production was shown to have a significant linear relationship with NPP in both natural and planted forests (R2= 0.67, 0.30,P<0.001). Correlation of litterfall production and climatic factors was higher in natural forest than in planted forest. Through correlative and path analyses, it was found that the climatic factors that most affect litterfall production in natural forest are annual mean maximum temperature, annual mean minimum temperature, annual extreme minimum temperature, and relative humidity, but in planted forest, they are annual extreme minimum temperature and annual mean minimum temperature. In both natural and planted forests, climatic factors could not account for the error in litterfall production predicted using the NPP.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
LAKSHMI CHOUDHARY ◽  
PRABHAWATI PRABHAWATI

Prevalence of soil transmitted helminthes infections in apparently healthy school going children and other 528 people of different districts of Koshi regions of North Bihar were evaluated. Over all incidences of STHs infection was 39.39% during study. High incidence of STH was seen in the rainy season i.e., in the month of July and August, September, significantly higher (P<0.05) .The incidence of Ascaris lumbricoides was highest in the month of August (18.64%). The month of September was 15.25% followed by that of July (14.4%) and October with 10.16%. Also the incidence of hookworm registered the highest incidence in the month of June (19.27%) and lowest in the month of December (4.82%) during the study period. However prevalence of Trichuris trichiura was negligible and it was almost nil in the most of the months but was highest in month of September with 28.57% and lowest in October with 14.00% The climatic factors are responsible for soil transmitted helminthes which are temperature, rainfall and relative humidity. Ascariasis, Trichuriasis and Ancyclostomiasis (Hookworm infection) are found to be endemic in this region.


1934 ◽  
Vol 25 (3) ◽  
pp. 309-335 ◽  
Author(s):  
K. R. S. Morris

SummaryA detailed study of the bionomics ofGlossina longipalpis, Wied., was undertaken at Takoradi, the principal port of the Gold Coast in West Africa, and lasted from February to September 1931.The topography of this country is undulating; the vegetation is of Transition Forest type, intermediate in character between Rain Forest and Savannah Forest, and of an exceedingly dense, homogeneous nature, with a few small glades in the forest, and interrupted by large open marshes on the lower and flatter ground.The climate is remarkably equable, with a low mean annual rainfall between 40 and 45 inches, but constantly high humidities, owing to the moisture-laden sea-winds. There is a double rainy season, the main rains from April to July, and a second shorter period of rainfall in October and November.There is a rich mammalian fauna, with the exception of the larger game animals.Three species ofGlossinaoccur:G. longipalpis, Wied., the commonest, evenly distributed throughout the bush, and the only species dealt with in this paper;G. palpalis, R.-D., confined to water-courses and the edges of lagoons; andG. medicorum, Aust., rarely met with.Two isolated fly-belts, identical in every way, were studied. In one, section A, flies were caught and killed daily; in the other, section B, the control area, the flies were liberated after noting the catches. By September, the tsetse population of A had been reduced to less than one-third of that of B, presumably the effects of catching and killing.The main food hosts of this species were the bushbuck and duiker, ubiquitous in this forest. When these small game animals were driven out of a third fly-belt, section C, by farming and wood-cutting, the fly quickly and completely disappeared. This species was never found to feed on reptiles, although they were common in the fly-belts.Meteorological observations in the open country and in the fly-belts showed a consistently lower temperature and higher humidity in the latter, as well as its greater equity in these factors. The movement of the fly into the open was apparently governed by humidity, the greatest movement taking place when the humidity of the open was within the normal range of fly-belt humidity.By statistical methods, coefficients of correlation were determined for the fly's density-activity and various climatic factors of the fly-belt. The fly showed a high positive correlation with temperature, and a lower correlation with humidity, of which saturation deficit was a better index than atmometer evaporation. There was a significant correlation with sunshine, but none with rainfall. This correlation with humidity was mainly a temperature effect, as was also the correlation with sunshine. Temperature was evidently of major importance. There was a significant negative correlation between fly and relative humidity, measured with a wet and dry bulb hygrometer in a screen in the open.All correlations were greatest when considered direct, the fly catches with simultaneous climatic readings, indicating that these factors influence the activity of the fly in this way, rather than its density. The fly was found to be inactive at temperatures below 74°F., with high humidities of 80 or 90 per cent. or over. This explains the major influence of temperature, shown by the methods of correlations. The temperature range in the fly-belt, during the period of observations, was close to the temperature significant for the fly's activity, and therefore variations produced marked reactions; the humidity range was much closer to the fly's optimum and therefore better tolerated.There is marked daily rhythm in the fly's activity, which is only influenced by climate under extremely unfavourable conditions of temperature or humidity.The distribution ofG. longipalpisin the Gold Coast is dependent upon the humidity of the ecoclimate, rather than upon temperature. It occurs in three main vegetational types—Transition Forest, Inland Savannah Forest, and Coastal Savannah— where the range of humidities is between 50 and 80 per cent. R.H., and temperature between 75° and 85°F. It does not occur in the Rain Forest, where the relative humidity is constantly above 80 per cent., or in northern Savannah, where the humidity is as low as 30 per cent, in the dry season.The main breeding season was from March to July with its maximum in May, at the height of the rains.This species was found infected withTrypanosoma gambiense,T. congolense, andT. vivaxat Takoradi, and is probably second in importance toG. palpalisas a vector of sleeping sickness in the Gold Coast, but at present of less importance thanG. palpalisorG. tachinoidesin the transmission of trypanosomiasis of stock.The receding of the Ashanti forest and the present development of the Colony may cause even greater contact between this species of tsetse and man. The main policy for control should lie in improving and controlling the natives' methods of cultivating the bush. Farms should be as close to the village as possible, contiguous, and kept under cultivation, if possible, permanently. Clearings should be made of at least 100 yards width round bush villages, and of at least 200 yards width round important towns. Small clearings and isolated farms are considered a danger.


Author(s):  
Guotao Yang ◽  
Xuechun Wang ◽  
Farhan Nabi ◽  
Hongni Wang ◽  
Changkun Zhao ◽  
...  

AbstractThe architecture of rice plant represents important and complex agronomic traits, such as panicles morphology, which directly influence the microclimate of rice population and consequently grain yield. To enhance yield, modification of plant architecture to create new hybrid cultivars is considered a sustainable approach. The current study includes an investigation of yield and microclimate response index under low to high plant density of two indica hybrid rice R498 (curved panicles) and R499 (erect panicles), from 2017 to 2018. The split-plot design included planting densities of 11.9–36.2 plant/m2. The results showed that compared with R498, R499 produced a higher grain yield of 8.02–8.83 t/ha at a higher planting density of 26.5–36.2 plant/m2. The response index of light intensity and relative humidity to the planting density of R499 was higher than that of R498 at the lower position of the rice population. However, the response index of temperature to the planting density of R499 was higher at the upper position (0.2–1.4%) than at the lower position. Compared with R498, R499 at a high planting density developed lower relative humidity (78–88%) and higher light intensity (9900–15,916 lx) at the lower position of the rice population. Our finding suggests that erect panicles are highly related to grain yield microclimatic contributors under a highly dense rice population, such as light intensity utilization, humidity, and temperature. The application of erect panicle rice type provides a potential strategy for yield improvement by increasing microclimatic conditions in rice.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Yongfang Xu ◽  
Zhaohui Lin ◽  
Chenglai Wu

Central Asia is prone to wildfires, but the relationship between wildfires and climatic factors in this area is still not clear. In this study, the spatiotemporal variation in wildfire activities across Central Asia during 1997–2016 in terms of the burned area (BA) was investigated with Global Fire Emission Database version 4s (GFED4s). The relationship between BA and climatic factors in the region was also analyzed. The results reveal that more than 90% of the BA across Central Asia is located in Kazakhstan. The peak BA occurs from June to September, and remarkable interannual variation in wildfire activities occurs in western central Kazakhstan (WCKZ). At the interannual scale, the BA is negatively correlated with precipitation (correlation coefficient r = −0.66), soil moisture (r = −0.68), and relative humidity (r = −0.65), while it is positively correlated with the frequency of hot days (r = 0.37) during the burning season (from June to September). Composite analysis suggests that the years in which the BA is higher are generally associated with positive geopotential height anomalies at 500 hPa over the WCKZ region, which lead to the strengthening of the downdraft at 500 hPa and the weakening of westerlies at 850 hPa over the region. The weakened westerlies suppress the transport of water vapor from the Atlantic Ocean to the WCKZ region, resulting in decreased precipitation, soil moisture, and relative humidity in the lower atmosphere over the WCKZ region; these conditions promote an increase in BA throughout the region. Moreover, the westerly circulation index is positively correlated (r = 0.53) with precipitation anomalies and negatively correlated (r = −0.37) with BA anomalies in the WCKZ region during the burning season, which further underscores that wildfires associated with atmospheric circulation systems are becoming an increasingly important component of the relationship between climate and wildfire.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3338
Author(s):  
Ivan Vajs ◽  
Dejan Drajic ◽  
Nenad Gligoric ◽  
Ilija Radovanovic ◽  
Ivan Popovic

Existing government air quality monitoring networks consist of static measurement stations, which are highly reliable and accurately measure a wide range of air pollutants, but they are very large, expensive and require significant amounts of maintenance. As a promising solution, low-cost sensors are being introduced as complementary, air quality monitoring stations. These sensors are, however, not reliable due to the lower accuracy, short life cycle and corresponding calibration issues. Recent studies have shown that low-cost sensors are affected by relative humidity and temperature. In this paper, we explore methods to additionally improve the calibration algorithms with the aim to increase the measurement accuracy considering the impact of temperature and humidity on the readings, by using machine learning. A detailed comparative analysis of linear regression, artificial neural network and random forest algorithms are presented, analyzing their performance on the measurements of CO, NO2 and PM10 particles, with promising results and an achieved R2 of 0.93–0.97, 0.82–0.94 and 0.73–0.89 dependent on the observed period of the year, respectively, for each pollutant. A comprehensive analysis and recommendations on how low-cost sensors could be used as complementary monitoring stations to the reference ones, to increase spatial and temporal measurement resolution, is provided.


Sign in / Sign up

Export Citation Format

Share Document