scholarly journals Atrazine and Mesotrione-Induced Oxidative Stress and Impact on Antioxidant Enzymes and Chlorophyll Contents in Bermudagrass

2018 ◽  
Vol 36 ◽  
Author(s):  
Y. WANG ◽  
J. YU ◽  
B. ZHOU ◽  
S. SAPKOTA ◽  
F. WEI ◽  
...  

ABSTRACT: The effect of atrazine, mesotrione, and joint activity of atrazine plus mesotrione on pigment, lipid peroxidation, and antioxidant enzyme activity was studied. Atrazine and mesotrione treatments significantly reduced chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoid concentrations, and protein content in bermudagrass (Cynodon dactylon L.) plants, whereas they significantly enhanced lipid peroxidation. The treatment of atrazine plus mesotrione caused greater phototoxic effect on bermudagrass than either herbicide alone, which was evident from the significantly decreased membrane stability noted as a function of the enhanced singlet oxygen and malondialdehyde (MDA) contents, as well as from the greater reduction in Chl a, Chl b, and carotenoid contents. Although bermudagrass activated the antioxidant enzymes catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST), it was significantly injured after the herbicide treatments. Thus, results suggested that the enzymatic and non-enzymatic antioxidants of bermudagrass was overloaded after the treatment of atrazine plus mesotrione, and the reactive oxygen species (ROS) subsequently caused lipid peroxidation, pigment and protein degradation, as well as other cellular constituent damage.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


2020 ◽  
Vol 12 (11) ◽  
pp. 4732 ◽  
Author(s):  
Hossam S. El-Beltagi ◽  
Mahmoud R. Sofy ◽  
Mohammed I. Aldaej ◽  
Heba I. Mohamed

In recent years, nutrient management has gained much attention as a way to mitigate heavy metal stress. Silicon (Si) promotes plant defense responses against toxic metal stresses. In this study, we evaluated the effects of silicon (Si) on copper (Cu) toxicity in two flax genotypes (Sakha 1 and Sakha 2) as it relates to plant growth, yield attributes, total chlorophyll, nucleic acid content, enzymatic and non-enzymatic antioxidants, oxidative damage, lipid peroxidation, copper and silicon content, and fatty acid composition. The results showed that Cu (100 and 200 µM) inhibited plant growth and increased Cu accumulation in soil, roots, and shoots. Cu significantly decreased the yield attributes, total chlorophyll by 9.5% and 22% in Sakha 1 and by 22.5% and 29% in Sakha 2, and enhanced the accumulation of non-enzymatic (tocopherol), enzymatic antioxidants such as superoxide dismnutase, peroxidase, ascorbate peroxidase and catalase) and secondary metabolites (phenol and flavonoids). The DNA content significantly decreased in stressed plants with 100 and 200 µM Cu about 22% and 44%, respectively, in Sakha 1 and about 21.6% and 34.7% in Sakha 2, and RNA content also decreased by about 20% and 29%, respectively, in Sakha 1 and by about 2% and 13% in Sakha 2 compared to the control plant. Furthermore, Cu stress accelerated the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and induced cellular oxidative injury caused by lipid peroxidation. In parallel, Cu induced a change in the composition of fatty acids, resulting in lower unsaturated fatty acid levels and increased saturated fatty acids (increased saturation/unsaturation ratio for both genotypes). Treating the flax plants with irrigation three times with Si protected the plants from Cu toxicity. Si treatment decreased the uptake and the transport of Cu to the shoots and harvested seeds and promoted plant growth, yield attributes, and antioxidant defense systems by reducing Cu accumulation, lipid peroxidation, and the generation of H2O2. In addition, the alleviation of Cu toxicity correlated with increased Si accumulation in the roots and shoots. In conclusion, Si can be used to improve the resistance of flax plants to Cu toxicity by up-regulating the antioxidant defense system such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT) and decreasing the oxidative damage caused by reactive oxygen species (ROS).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Marzena Zalewska-Ziob ◽  
Brygida Adamek ◽  
Janusz Kasperczyk ◽  
Ewa Romuk ◽  
Edyta Hudziec ◽  
...  

Lung tissue is directly exposed to high oxygen pressure, as well as increased endogenous and exogenous oxidative stress. Reactive oxygen species (ROS) generated in these conditions play an important role in the initiation and promotion of neoplastic growth. In response to oxidative stress, the antioxidant activity increases and minimizes ROS-induced injury in experimental systems. The aim of the present study was to evaluate the activity of antioxidant enzymes, such as superoxide dismutase (SOD; isoforms: Cu/ZnSOD and MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST), along with the concentration of malondialdehyde (MDA) in tumor and adjacent noncancerous tissues of two histological types of NSCLC, i.e., adenocarcinoma and squamous cell carcinoma, collected from 53 individuals with surgically resectable NSCLC. MDA concentration was similar in tumors compared with adjacent noncancerous tissues. Tumor cells had low MnSOD activity, usually low Cu/ZnSOD activity, and almost always low catalase activity compared with those of the corresponding tumor-free lung tissues. Activities of GSH-related enzymes were significantly higher in tumor tissues, irrespective of the histological type of cancer. This pattern of antioxidant enzymes activity could possibly be the way by which tumor cells protect themselves against increased oxidative stress.


Author(s):  
I Akinlua

Hypertension or high blood pressure and its complications is a major cause of morbidity and mortality all over the world. The development of hypertension has been linked to atherosclerosis formation and progression which in turn has its root in free radicals induced oxidative stress and antioxidants present. This work was undertaken to determine plasma activity of enzymatic antioxidants and lipid peroxidation level in patients with moderate and severe hypertension to establish a possible association between these parameters and progression of hypertension. A total number of 60 hypertensive patients that are freshly diagnosed made up of 30 moderate and 30 severe hypertensive patients with 30 relatively healthy subjects as control recruited from Wesley Guide Hospital, Ilesa, Osun State Nigeria was used for this study. Plasma activity of catalase, superoxide dismutase, glutathione peroxidase and plasma level of malondialdehyde (MDA) was determined in both patients and control subjects using standard methodologies. The results obtained was subjected to statistical analysis using two-way analysis of variance (ANOVA) and post-hoc Duncan test with (p<0.05) considered to be significant. The result of this study revealed a significant decrease (P<0.05) in the activity of the antioxidant enzymes considered. The plasma MDA in all the patients was raised but not statistically significant p<0.05 from result obtained for the control subjects. Progressive decrease in the activity of antioxidant enzymes in these patients and a possible oxidative stress as hypertension progresses as shown in this study could be a pointer to the fact that these molecules might influence greatly the progression of hypertension.


2010 ◽  
Vol 2 (4) ◽  
pp. 76-82 ◽  
Author(s):  
Hossam Saad EL-BELTAGI ◽  
Amal A. MOHAMED ◽  
Mohamed M. RASHED

Presented study has demonstrated that exposure of plants to toxic heavy metal Cd results a reduction in plant growth. Varied concentrations of CdCl2, ranging from 0.0 to 50 ppm in the germinating media reduced leaf area of radish plant, chlorophyll and carotenoid contents. Greater loss of chlorophyll b content than chlorophyll a was observed especially under 50 ppm Cd exposure. With regards to the distribution of Cd in roots and leaves, the obtained data showed that the maximum accumulation of Cd occurred in roots followed by leaves. Generally, Fe, Zn, Mn and Cu declined in leaves compared to the roots. Furthermore, substantial increases were observed in antioxidant enzymes, such as catalase (CAT), glutathione S-transferase (GST) and peroxidase (POD), in Cd-stressed plants in comparison with control. The Cd stress also induced several changes in CAT and POD isozyme profiles and enhanced their activities. The results suggest that the reduction of leaf area and pigment content together with antioxidant enzymes and isozyme patterns can be used as indicators to Cd contamination.


2014 ◽  
Vol 26 (3) ◽  
pp. 268-277 ◽  
Author(s):  
Andresa Lana Thomé Bizzo ◽  
Aline Chaves Intorne ◽  
Pollyana Honório Gomes ◽  
Marina Satika Suzuki ◽  
Bruno dos Santos Esteves

AIM: To evaluate, in a short-time exposure, the physiological responses of Salvinia auriculata Aubl. under different concentrations of Cu. METHODS: The plants were exposed to treatments with 0.01, 0.1, 1 and 10 mM of Cu in a period of 2 days. Then development variables of S. auriculata (weight, photosynthetic pigments, and soluble carbohydrate), lipid peroxidation (malondialdehyde, aldehydes, and electrolyte leakage) and production of antioxidants (anthocyanins, carotenoids, flavonoids, and proline) were evaluated. RESULTS: It was observed fresh weight reductions in concentrations above 1 mM of Cu. Chlorophyll a decreased with the increase of Cu concentrations unlike chlorophyll b. The ratio chlorophyll a / chlorophyll b was changed due to the degradation of photosynthetic pigments. The reductions of carotenoids were more pronounced than that of total chlorophyll. The values of electrolyte leakage ranged from 14 to 82 % and lipid peroxidation from 7 to 46 nmol.g-1. Flavonoids and soluble carbohydrates showed reductions with the increase of Cu concentration. Anthocyanins, phenolic compounds, and proline when subjected to 0.1 mM of Cu had increased, suggesting adaptability of plant stress caused directly by metal and reactive oxygen species. In higher concentrations, degradation and/or direct modifications of these molecules possibly occurred. CONCLUSIONS: The data suggest that S. auriculata is provided with an efficient mechanism against stress caused by Cu in the concentration of 0.1 mM. As for higher concentrations (1 and 10 mM), despite its role as micronutrients, Cu was toxic to the plant due to the redox behavior of this metal, which leads to the exacerbated formation of reactive oxygen species, inducing to severe damage such as biological membrane degradation and protein denaturation.


Author(s):  
Mahsa Zarei ◽  
T. Shivanandappa

AbstractCyclophosphamide (CP), one of the most widely used antineoplastic drugs, causes toxic side effects on vital organs including brain. In this study, we have investigated neuroprotective potential of the aqueous extract of the roots ofSwiss albino male mice were pre-treated with DHA (50 and 100 mg/kg b.w.) for 10 consecutive days followed by an injection with CP intraperitoneally (25 mg/kg b.w.) for 10 days 1 h after DHA treatment; 16 h later, they were euthanized, their brains were immediately removed, and biochemical and molecular analyses were conducted.The results indicated that injection of CP induced oxidative stress in the mouse brain as evident from the increased lipid peroxidation, reactive oxygen species, depletion of glutathione and reduced activities of the antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. Treatment with DHA significantly mitigated the CP-induced oxidative stress. Moreover, expression of genes for the antioxidant enzymes was downregulated by CP treatment which was reversed by DHA.In conclusion, DHA protected the brain from oxidative stress induced by CP, and therefore, it could be a promising nutraceutical as a supplement in cancer chemotherapy in order to ameliorate the toxic side effects of cancer drugs.


2003 ◽  
Vol 22 (9) ◽  
pp. 473-480 ◽  
Author(s):  
R Haque ◽  
B Bin-Hafeez ◽  
S Parvez ◽  
S Pandey ◽  
I Sayeed ◽  
...  

Walnut (Juglans regia L.) is extensively used in traditional systems of medicine for treatment of various ailments. It is described as an anticancer, tonic, blood purifier and detoxifier agent. The present study was undertaken to investigate modulatory effects of walnut extract on the toxicity of an anticancer drug, cyclophosphamide (CP) with special reference to protection against disruption of drug metabolizing and antioxidant enzymes. Plant extract+CP group animals showed restoration in the level of cytochrome P450 (CYP) content and in the activities of glutathione S-transferase (GST), glutathione peroxidase (GP) and catalase (CAT) in both liver and kidneys. But plant extract restored the activity of super oxide dismutase (SOD) and the level of reduced glutathione (GSH) in the kidneys only when compared with CP-treated animals. Plant extract treatment alone caused significant reduction in the content of CYP in the kidneys mainly. The extract showed a significant increase in the level of GSH and in the activities of GP in both the tissues and CAT in liver only, whereas no significant change was observed in the activities of GST and SOD. CP treatment resulted in a significant (P<0.01) increase in the lipid peroxidation (LPO) in the liver and kidneys compared with controls, while the extract CP treated group showed a significant decrease in the LPO in liver and kidneys when compared with the CP-treated group. The study shows that the use of J. regia extract might be helpful in abrogation of CP toxicity during the chemotherapy.


2017 ◽  
Vol 33 (8) ◽  
pp. 636-645 ◽  
Author(s):  
Yasemin Aydin ◽  
Melike Erkan

Polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental contaminants that disrupt endocrine function in biological systems, especially in the male reproductive system. Previous studies on the reproductive toxicity of PCBs have focused on the impairment of spermatogenesis, disruption of steroidogenesis, decreased sperm number, and infertility. Aroclor 1242 is a commercial mixture with an average of 42% chlorine by weight. The purpose of the present study was to elucidate the hazardous effects of Aroclor 1242 on Leydig cells through an evaluation of cell viability, lipid peroxidation, hydroxyl radicals, H2O2 production, antioxidant enzymes, and steroidogenic enzymes. Leydig cells were exposed to Aroclor 1242 for 24 h under basal and luteinizing hormone-stimulated conditions at different concentrations (ranging from 10−16 M to 10−6 M). After incubation, Leydig cells were measured for cell viability, lipid peroxidation, reactive oxygen species (hydroxyl radical and H2O2), antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase), and steroidogenic enzymes (3β-hydroxysteroid dehydrogenase [HSD] and 17β-HSD). The results showed that cell viability was reduced only at Aroclor 1242 concentrations of 10−6 M and 10−8 M, whereas lipid peroxidation and reactive oxygen species increased relative to the concentration. Furthermore, antioxidant systems and steroidogenesis were interrupted to varying degrees, relative to the concentration. These findings suggest that exposure to Aroclor 1242 at high concentrations may result in detrimental effects to Leydig cell homeostasis. In addition, Aroclor 1242 may impair steroidogenesis, especially testosterone biosynthesis, by inhibiting two important steroidogenic enzymes.


Sign in / Sign up

Export Citation Format

Share Document