scholarly journals Oxygen consumption and ammonia excretion of the searobin Prionotus punctatus (Scorpaeniformes, Triglidae) at two different temperatures

1999 ◽  
Vol 47 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Vicente Gomes ◽  
Phan Van Ngan ◽  
Maria José de Arruda Campos Rocha Passos ◽  
Liliana Lucia Christina Forneris

Routine oxygen consumption and ammonia excretion were measured at 20ºC and 25ºC in the searobin Prionotus punctatus collected in Ubatuba region (22º30'S), SP, Brazil, in western South Atlantic, to investigate energy expenditure and losses through metabolic processes. IndividuaIs ranging from 1.00g to 88.47g and from 1.79g to 56.50g were used in experiments at 20ºC and 25ºC, respectively. At 20ºC and 25ºC, the averages of weight-specific oxygen consumption for the weight class of 1.00 - 10.00g, common to both temperatures, were 162.46µ 39.51 µ.10z/g/h and 200.47µ 92.46 µ.10z/g/h, respectively; for the weight class of 50.01 - 60.00g these values were 112.30 µ 22.84 µ.10z/g/h and 114.60 µ 20.36 µ.10zlg/h. At 20ºC and 25ºC, the averages of weight-specific ammonia excretion for the weight class of 1.00 to 1O.00g were 1.03 µ 0.37 fJ.M/g/h and 1.21 µ 0.65 µ.M/g/h, respectively; for the weight class of 50.01 -60.00g these values were 0.68 µ 0.13 fJ.M/g/h and 0.60 µ 0.22 µ.M/g/h. The energy budget for the species was calculated at both temperatures using the experimental data and a model for marine teleosts proposed in the literature.

1970 ◽  
Vol 48 (6) ◽  
pp. 377-381 ◽  
Author(s):  
Carol Colthart ◽  
Margot R. Roach

The oxygen consumption [Formula: see text] of isolated segments of 40 human umbilical arteries was measured at different temperatures from 5 °C to 37 °C with a modified Fenn microrespirometer. The values varied from 8 μl/g per h at 8 °C to 70 μl/g per h at 37 °C. The Arrhenius plot was nonlinear, and the Q10 varied from 0.11 (30–40 °C) to 1.8 (20–30 °C) and 7.1 (10–20 °C). This suggests that the metabolic processes may be different at high and low temperatures. The results were consistent for at least 5 h post partum, and did not seem to vary from one segment of the cord to another.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 52
Author(s):  
Chengjian Wang ◽  
Na Kou ◽  
Xiaowei Liu ◽  
Dazuo Yang

(1) Background: Marphysa sanguinea is a polychaete with high economic value and ecological importance. Information on metabolism is important to understand the physiological action of organisms. (2) Methods: The rates of oxygen consumption (R) and ammonia excretion (U) were measured using different temperatures (T) and body mass (M) levels. The activation energy (E) was calculated using the universal temperature dependence theory. (3) Results: Oxygen consumption presented a curve with an upward trend first, and then a downward trend, and ammonia excretion displayed a “U” curve. The effects of temperature and body size on oxygen consumption and ammonia excretion rates were extremely significant. Small individuals had higher metabolic rates than large polychaetes at the same temperature. The relationship between oxygen consumption, ammonia excretion, and M was expressed as Y = a·Mb, bR = 0.56 ± 0.09, and bU = 0.35 ± 0.30. The oxygen consumption activation energy was ER = 0.68 eV, and the ammonia excretion activation energy was EU = 0.53 eV. The O:N ratio at different temperatures and body sizes was in the range of 3.55–56.44. (4) Conclusions: The results not only provide basic data on the metabolism of M. sanguinea but also insights to understand the relationship between animal metabolism and ecological factors from different perspectives.


2014 ◽  
Vol 62 (4) ◽  
pp. 315-321 ◽  
Author(s):  
Vicente Gomes ◽  
Maria José de Arruda Campos Rocha Passos ◽  
Arthur José da Silva Rocha ◽  
Thais da Cruz Alves dos Santos ◽  
Fabio Matsu Hasue ◽  
...  

The energy budget of Antarctic stenothermic and/or stenohaline ectotherms is modulated by variations of temperature and salinity. The joint effects of these latter on polar organisms have been but little studied. Data on this subject are of great importance for an understanding of the energy demand of Antarctic animals such as amphipods, especially when considering their ecological importance and the possible impacts of global changes. Experiments were carried out at the Brazilian Antarctic Station "Comandante Ferraz" under controlled conditions. Specimens of Bovallia gigantea were collected in Admiralty Bay and acclimated to temperatures of 0ºC; 2.5ºC and 5ºC and to salinities of 35, 30 and 25. Thirty measurements were taken for each of the nine possible combinations of the three temperatures and the three salinities. Metabolic rates were assessed based on oxygen consumption and total ammonia nitrogenous excretion in sealed respirometers. At 0ºC and 2.5ºC, the metabolic rates of the animals that were acclimated to salinities of 30 or 35 were similar, indicating a possible mechanism of metabolic independence of temperature. However, the metabolic rates were always higher at 5.0ºC. The effects of temperature on oxygen consumption and on ammonia excretion rates were intensified by lower salinities. Individuals of B gigantea have a temperature-independent metabolic rate within a narrow temperature window that can be modified in accordance with salinity.


2014 ◽  
Vol 14 (3) ◽  
pp. 549-556 ◽  
Author(s):  
Jinghui Fang ◽  
Jihong Zhang ◽  
Zengjie Jiang ◽  
Xuewei Zhao ◽  
Xu Jiang ◽  
...  

2007 ◽  
Vol 3 (2) ◽  
pp. 25
Author(s):  
O. Sumule

<p>Energy budget of red sea bream <em>Pagrus major </em>larvae fed <em>n-3 </em>highly unsaturated fatty acids (HUFA)-enriched (EA) and non-enriched (NEA) <em>Artemia </em>nauplii was constructed as: EI = F + M + U + G, where EI is energy intake, F energy loss as feces, M energy loss for metabolism, U energy loss as non-fecal matter based on ammonia excretion, and G energy for growth. Larvae (29 days post hatching, 41,1 mg mean wet weight) were reared in six 80 1 circular tanks and fed EA and NEA for 12 days, with three replicates for each type of food. Overall, growth of larvae was significantly higher in EA group than NEA group. Oxygen consumption, as heat increment, was also significantly higher in EA-fed larvae than NEA-fed larvae. The energy budget of a 100-mg larva was partitioned into: 100% of EI = 38,4% for G + 34,5% for M + 2,9% for U + 24,2% for F, for EA group, whereas 100% of EI = 29,1% for G + 30,1% for M + 3,3% for U + 37.4% for F, for NEA group. Assimilation, gross conversion, and net conversion efficiencies were higher in EA-fed larvae than NEA-fed larvae, which were attributed to the higher energies channeled to metabolism and growth in the former. This study concluded that HUFA enrichment of <em>Artemia </em>nauplii increased energy absorption but reduced energy excretion in red sea bream larvae.</p> Key words : <em>Pagrus major, </em>larvae. HUFA enriched <em>Artemia </em>nauplii, oxygen consumption, ammonia excretion, heat increment, energy budget


2000 ◽  
Vol 48 (4) ◽  
pp. 369 ◽  
Author(s):  
David T. Booth

Incubation temperature influences embryonic development and the morphology of resultant hatchlings in many species of turtle but few studies have addressed its effect on oxygen consumption and total embryonic energy expenditure. Eggs of the Australian broad-shelled river turtle, Chelodina expansa, were incubated at constant temperatures of 24˚C and 28˚C to determine the effect of temperature on oxygen consumption, embryonic energy expenditure and hatchling morphology. All embryos at both incubation temperatures experienced a period of developmental diapause immediately after oviposition. Once this initial diapause was broken, embryos underwent a further period of developmental arrest when the embryo was still very small and had minimal oxygen consumption (<20 µL h–1). However, once rapid embryonic growth started, development appeared to be continuous. Rate of increase and peak rate of oxygen consumption were temperature dependent, both being highest at 28˚C. Net production efficiency (total oxygen consumed during incubation divided by yolk-free hatchling mass) was 120 mL O2 g–1 at 24˚C and 111 mL O2g–1 at 28˚C. Hatchling mass and yolk-free hatchling mass were independent of incubation temperature, but hatchlings from 28˚C had larger residual yolks and smaller head widths than hatchlings from 24˚C.


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


Ergonomics ◽  
1979 ◽  
Vol 22 (11) ◽  
pp. 1207-1215 ◽  
Author(s):  
A.K. SENGUPTA ◽  
D.N. SARKAR ◽  
S. MUKHOPADHYAY ◽  
D.C. GOSWAMI

Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


Author(s):  
Jose M.F. Babarro ◽  
María José Fernández-Reiriz ◽  
Uxío Labarta

Mussel seed Mytilus galloprovincialis (Bivalvia: Mytilidae) from two origins (rocky shore and collector ropes) was cultivated on a raft in the Ría de Arousa (north-west Spain), from seeding to thinning out, for 226 d (November 1995–July 1996) and two aspects of metabolism, oxygen consumption rate (VO2) and ammonia excretion rate (VNH4-N) were studied in situ.The model derived from multiple analysis of oxygen consumption accounted for 91.9% of the variance, based on dry weight of the mussels and the environmental factors quality of food (organic content) and mainly chlorophyll-a. Seed origin also showed significant influence. The seasonal pattern of the oxygen consumption can be attributed mainly to the variation of chlorophyll-a, which showed a higher range of values in the spring months.Origin of seed did not show a homogeneous effect on oxygen consumption throughout the cultivation period. Collector rope mussels showed higher oxygen consumption values at the beginning of the cultivation period and after the first 15 d, but the rocky shore mussels showed a higher oxygen consumption between days 22 and 110. Energy-conserving patterns and lower condition index at the onset of the experiment for rocky shore mussels could explain these initial differences.Multiple analysis on the variation of ammonia excretion rate provided a model that accounted for 72.6% of the variance based on dry weight of mussels, seed origin and the environmental parameters chlorophyll-a and total particulate matter. The rocky shore mussels showed a significantly higher excretion values for most of the cultivation period, although there was no constant tendency throughout. High excretion values were recorded between January and March, whilst for the rest of the cultivation period values were low.The O:N index was higher in collector rope mussels for most of the cultivation period, which may suggest a more favourable energy metabolism and/or a more appropriate nutritional state for these specimens.


Sign in / Sign up

Export Citation Format

Share Document