scholarly journals Morphological evaluation of the active tip of six types of orthodontic mini-implants

2013 ◽  
Vol 18 (2) ◽  
pp. 36-41 ◽  
Author(s):  
Flávia Mitiko Fernandes Kitahara-Céia ◽  
Tatiana Féres Assad-Loss ◽  
José Nelson Mucha ◽  
Carlos Nelson Elias

OBJECTIVE: To morphologically evaluate the active tip of six different types of self-drilling mini-implants for orthodontic anchorage. METHODS: Images of the active tips of the mini-implants were obtained with a Zeiss optical microscope, Stemi 200-C with magnification of 1.6X. The images of the surface were viewed with the Axio Vision program (Zeiss, Jena, Germany) to calculate linear and angular measures. Mini-implant morphology and the details of tips and threads were also evaluated through Scanning Electronic Microscopy (SEM) (JEOL, model JSM5800 LV - JEOL, Tokyo, Japan) with magnifications of 90X and 70X, respectively. The evaluation of the mini-implant taper shape was assessed using to the formula: (b - a) / (2 x D). RESULTS: The following variables were measured: (1) active tip width, (2) major diameter of external thread, (3) minor diameter of internal thread and taper of the mini-implant, (4) number of threads and lead of the screw, (5) angle of thread, (6) flank width and (7) pitch width. CONCLUSION: Mini-implants from different manufacturers presented active tips with different characteristics. Mechanical testing is necessary to cor-relate the analyzed characteristics aiming to determine the best performance.

2021 ◽  
Vol 0 (4) ◽  
pp. 41-47
Author(s):  
O.A. SELDIMIROVA ◽  

The processes of formation different types of calli, as well as the morphogenesis pathways in morphogenic calli, were studied by scanning electron microscopy (SEM) during anther culture in vitro in hybrid line Fotos of spring soft wheat. The microspore haploid origin of calli has been proven. The morphological status of the obtained calli was determined. It was shown that morphogenic callus consists of small densely packed meristematic cells covered with extracellular substance. This type of calli was obtained using a variant of the Potato II induction culture medium, added by 1.0 mg/l synthetic auxin 2,4-D. Nonmorphogenic callus consists of large, elongated, loosely located cells with a smooth surface. This type of calli was obtained using a variant of the Potato II culture medium, added by 2.0 mg/l 2,4-D. It was found that the introduction of various IAA concentrations into the Blaydes nutrient medium for regeneration in morphogenic calli implements the following pathways of morphogenesis in vitro: embryoidogenesis (without IAA addition), gemmorhizogenesis (0.5 mg/l), and rhizogenesis (1.5 mg/l). Revealed degenerative changes in cells of nonmorphogenic calli. The fundamental possibility of regulating of the morphogenesis pathways of in vitro of morphogenic calli in the direction necessary for research in biotechnological research has been confirmed.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 355
Author(s):  
Marco A. L. Hernandez-Rodriguez ◽  
Diego E. Lozano ◽  
Gabriela M. Martinez-Cazares ◽  
Yaneth Bedolla-Gil

The present study evaluates the effect of boron additions on the tribological performance of CoCrMo alloys. The alloys were prepared with boron ranging from 0.06 to 1 wt%. The materials were characterized using metallographic techniques, scanning electronic microscopy, and roughness and hardness tests. Tribological evaluation was made by means of ball-on-disc tests for sliding distances of 4, 8 and 12 km. The samples were in the as-cast condition and after a heat treatment at 1200 °C for 1 h, finished by water quenching. The results showed that wear resistance was influenced by the microstructure and the number of secondary phases. The volume loss decreased as the boron content increased. Due to hard phases, abrasion wear was observed. Delamination fatigue was also detected after long sliding distances. Both wear mechanisms diminished in higher boron content alloys.


2017 ◽  
Vol 9 (4) ◽  
pp. 47 ◽  
Author(s):  
Atul M. Kadam ◽  
Shitalkumar S. Patil

Objective: The purpose of current study was to improve physicochemical properties such as micrometric, compressibility and solubility of linezolid (LNZ) by preparing crystallo-co-agglomerates (CCA) in the presence of polymer for the enhancement of overall physicochemical performance.Methods: The process of agglomeration involves the use of dichloromethane (DCM) as a good solvent and chloroform as bridging liquid were used to prepare agglomerates. Agglomerates were characterised in the solid state using several techniques such as Scanning electronic microscopy(SEM), Fourier transformation infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRPD) The agglomerates obtained were evaluated for micrometric, mechanical, deformation, compressibility and drug release properties.Results: It was found that micrometric properties and dissolution characteristics of agglomerates were significantly improved than that of pure linezolid. Solubility was found to be increased than pure linezolid. The solubility of crystallo co-agglomerates was found an increase in 5 fold 3 fold and 3.7 fold for PVPK30 (0.5%), PVPK30 (0.25%) and PVPK30 (0.75%) respectively. The angle of repose for all batches was found between 22 ° to 30 °Carrs index was between 12.27±0.6 to 18.73±0.4 and Hausners ratio Near to 1, indicated good flow ability of agglomerates. The time required for drug release over a period of 60 min, is as LA1>LA2>LA3. LA3 shows fast drug release than LA1 and LA2, due to solubilization of drug due to more concentration of PVPK30 and less concentration of talc.Conclusion: Based on the above results, it was revealed that CCA of linezolid prepared with DCM and HPMC (Hydroxypropyl methyl cellulose)/PEG (Polyethylene glycol)/PVP (Polyvinylpyrrolidone) K30 exhibited improved micrometric properties, compressibility and in addition to improving solubility and dissolution rate.


2007 ◽  
Vol 39 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Z. Andjic ◽  
M. Korac ◽  
Z. Kamberovic ◽  
A. Vujovic ◽  
M. Tasic

In this paper synthesis of a composite based on Cu-Al2O3 by a thermo-chemical method is shown along with a comparative analysis of the properties of the obtained nanocomposite sintered samples, which are characterized by a good combination of electric-mechanical properties, suitable for work at elevated temperatures. Ultra fine and nanocrystal powder Cu-Al2O3 is obtained by a chemical method, starting from water solutions of nitrates up to achieving the requested composition with 3 and 5% of Al2O3. Synthesis of composite powders has been developed through several stages: drying by spraying, oxidation of the obtained powder of precursor and then reduction by hydrogen until the final composition of nanocomposite powder is achieved. After characterization of the obtained powders, which comprised examination by the Scanning Electronic Microscopy (SEM) method and X-ray-structure analysis (RDA), the powders were compacted with compacting pressure of 500 MPa. Sintering of the obtained samples was performed in the hydrogen atmosphere in isothermal conditions at temperatures of 800 and 900oC for 30, 60, 90 and 120 minutes. Characterization of the obtained Cu-Al2O3 of the nanocomposite sintered system comprised examination of microstructure by the Scanning Electronic Microscopy (SEM), as well as examining of electric mechanical properties. The obtained results show a homogenous distribution of dispersoides in the structure, as well as good mechanical and electric properties. .


2017 ◽  
Vol 17 (2) ◽  
pp. 203 ◽  
Author(s):  
Endah Retnaningrum ◽  
Wahyu Wilopo

The present research was conducted to investigate sulphate and manganese removal from synthetic wastewater. The continuous laboratory scale of down-flow fluidized-bed reactor (DFBR) using sulphate reducing bacteria (SRB) consortium and Indonesian natural zeolite as a bacterial support material was designed. At 9 days operation, maximum sulphate and manganese removal was observed to be 23% and 15.4%, respectively. The pH values were also changed to neutral. The population of SRB increased which effect on the raising of their activity for removing sulphate and manganese. Using the scanning electronic microscopy (SEM), it was observed that natural zeolite possesses excellent physical characteristics as a bacterial support material in DFBR. The imaging SEM result of SRB consortium on zeolite surface clearly showed the developed SRB biofilm on that particle. Analysis result of EDX confirmed that manganese was precipitated as manganese–sulfides.


2021 ◽  
Vol 13 (16) ◽  
pp. 9269
Author(s):  
Saddam Hussein Abo Sabah ◽  
Luis Hii Anneza ◽  
Mohd Irwan Juki ◽  
Hisham Alabduljabbar ◽  
Norzila Othman ◽  
...  

This study investigated the optimization of the bioconcrete engineering properties and durability as a response of the calcium lactate (CL) content (0.22–2.18 g/L) and curing duration (7–28 days) using the response surface methodology (RSM). Scanning electronic microscopy (SEM) was conducted to evaluate the microstructure of calcium precipitated inside the bioconcrete. The results indicated that the optimal conditions for the engineering properties of concrete and durability were determined at 2.18 g/L of CL content after 23.4 days. The actual and predicted values of the compressive strength, splitting tensile strength, flexural strength, and water absorption were 43.51 vs. 43.43, 3.19 vs. 3.19, 6.93 vs. 5.50, and 7.55 vs. 7.55, respectively, with a level of confidence exceeding 95%. The scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDX) proved that the amount of calcium increased with the increase in CL content up to 2.81 g/L at 23.4 days, reducing the pores inside the concrete and making it a great potential option for healing of concrete structures.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4560 ◽  
Author(s):  
Zdenek Horak ◽  
Karel Dvorak ◽  
Lucie Zarybnicka ◽  
Hana Vojackova ◽  
Jana Dvorakova ◽  
...  

Rigid polyurethane (PUR) foam is products used as a biomedical material for medical device testing. Thermal stability is a very important parameter for evaluating the feasibility of use for testing surgical instrument load during drilling. This work aimed to perform experimental measurements to determine the dependence of the mechanical properties of a certified PUR on temperature, strain rate and density. Experimental measurements were realised for three types of the PUR samples with different density 10, 25 and 40 pounds per cubic foot. The samples were characterised in terms of their mechanical properties evaluated from tensile and compression tests at temperatures of 25 °C, 90 °C and 155 °C. Furthermore, the structures of the samples were characterised using optical microscope, their thermal properties were characterised by thermogravimetric analysis, and their density and stiffness with the effect of temperature was monitored. The results show that it is optimal not only for mechanical testing but also for testing surgical instruments that generate heat during machining. On the basis of experimental measurements and evaluations of the obtained values, the tested materials are suitable for mechanical testing of medical devices. At the same time, this material is also suitable for testing surgical instruments that generate heat during machining.


Sign in / Sign up

Export Citation Format

Share Document