Fire as a Tool for Controlling Tamarix spp. Seedlings

2012 ◽  
Vol 5 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Michelle K. Ohrtman ◽  
Sharon A. Clay ◽  
David E. Clay ◽  
Alexander J Smart

AbstractFire is often used in northern grasslands to control invasive grass species but has unknown effects on Tamarix spp., more recent invaders. Temperature (using an oven as a fire surrogate) and duration combinations that would be most lethal to Tamarix seeds and seedlings were determined. Tamarix seeds were sown in soil-lined dishes, water added to saturation, and seedlings grown for 1 to 5 d. Seeds were also placed in water-saturated or dry soil just before temperature exposure (79 to 204 C [175 to 400 F]) by duration (1 to 5 min) treatments. After treatment, soil water loss was measured by weight difference, and surviving seedlings were counted for 6 d. Tamarix seedling establishment and survival decreased with increasing temperature and duration. The 5-d-old seedlings were the most affected. No 5-d-old seedlings survived 1- and 2-min exposures to 204 C, whereas 1-d-old seedlings had greater than 25% survival. If soils were saturated, two to four times more seedlings established following seed exposure to 177 and 204 C. Longer durations at lower temperatures were required to reduce Tamarix survival. Increasing duration from 2 to 5 min at 121 C decreased 5-d-old seedling survival from more than 80% to less than 10% and eliminated those seedlings at 149 C. Five minutes at 149 C decreased dry-soil seed viability to about 15%, whereas germination on saturated soils remained high (∼75%). No seeds survived the exposure to 177 and 204 C. Soil moisture loss values associated with 90% mortality of 5- and 1-d-old seedlings were 1.7 and 2.2%, respectively. On saturated soils, 90% of seeds died with 2.5% water loss. Under suitable conditions, fire can decrease Tamarix seedling survival. Fire may be useful for controlling Tamarix seedlings in northern grasslands and should be considered for management of new invasions.

2001 ◽  
Vol 35 (13) ◽  
pp. 2727-2733 ◽  
Author(s):  
José R. Fábrega ◽  
Chad T. Jafvert ◽  
Hui Li ◽  
Linda S. Lee

2021 ◽  
Vol 01 ◽  
Author(s):  
Anna Olejnik ◽  
Aleksandra Galarda ◽  
Joanna Goscianska

Background: Cannabis Sativa seed oil has become more and more popular in cosmetic industry mainly due to the high content of antioxidants and unsaturated fatty acids that are desirable in formulations because they prevent moisture loss and reduce the occurrence of dry skin. Objective: The aim of this study was to determine the effect of Cannabis Sativa seed oil on skin parameters such as hydration and transepidermal water loss. Methods: The in vivo tests on volunteers with combination skin were performed by using non-invasive methods by using corneometer and tewameter. Results: The obtained results proved that Cannabis Sativa seed oil improved skin condition. The transepidermal water loss decreased because the lipophilic components of the oil formulation tend to form an occlusive layer on the epidermis surface. The highest increase in skin hydration was observed after one week of treatment. Conclusion: These results confirmed that Cannabis Sativa seed oil has strong moisturizing properties and can be recommended as a natural based skin conditioning agent.


1972 ◽  
Vol 35 (2) ◽  
pp. 98-101 ◽  
Author(s):  
P. P. Graham ◽  
T. N. Blumer

Hams were frozen, stored, and thawed before dry-curing to study the profiles of quality as related to environmental conditions. Quality appraisals and sampling were done after thawing, after curing, and after 30 days aging in an atmosphere where temperature and relative humidity were controlled at about 34.5 C and 62.5%, respectively. The pH, water, NaCl, and fat contents were determined. Surface pH of hams increased from the thawed fresh state to the unstored cured state, but decreased generally after the aging period (stored cured ham). The pH was higher on the surface than that of corresponding internal areas. The pH of the internal tissue was lower for thawed product than cured or aged product. The average percent water decreased during curing and aging periods. Water loss after curing and after aging in the prefrozen hams was greater than that reported for unfrozen hams. The quantity of water, NaCl, and fat varied among the several muscle areas and reasons for variation are discussed. All hams were of acceptable quality at each appraisal period. Decreasing moisture levels of hams were reflected by decreases in conformation scores throughout the processing periods. Increased firmness was accompanied by weight loss, moisture loss, and increased NaCl percentage.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237894
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnström ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

Infectious diseases and invasive species can be strong drivers of biological systems that may interact to shift plant community composition. For example, disease can modify resource competition between invasive and native species. Invasive species tend to interact with a diversity of native species, and it is unclear how native species differ in response to disease-mediated competition with invasive species. Here, we quantified the biomass responses of three native North American grass species (Dichanthelium clandestinum, Elymus virginicus, and Eragrostis spectabilis) to disease-mediated competition with the non-native invasive grass Microstegium vimineum. The foliar fungal pathogen Bipolaris gigantea has recently emerged in Microstegium populations, causing a leaf spot disease that reduces Microstegium biomass and seed production. In a greenhouse experiment, we examined the effects of B. gigantea inoculation on two components of competitive ability for each native species: growth in the absence of competition and biomass responses to increasing densities of Microstegium. Bipolaris gigantea inoculation affected each of the three native species in unique ways, by increasing (Dichanthelium), decreasing (Elymus), or not changing (Eragrostis) their growth in the absence of competition relative to mock inoculation. Bipolaris gigantea inoculation did not, however, affect Microstegium biomass or mediate the effect of Microstegium density on native plant biomass. Thus, B. gigantea had species-specific effects on native plant competition with Microstegium through species-specific biomass responses to B. gigantea inoculation, but not through modified responses to Microstegium density. Our results suggest that disease may uniquely modify competitive interactions between invasive and native plants for different native plant species.


Vestnik MGSU ◽  
2018 ◽  
pp. 271-281
Author(s):  
V. V. Sidorov ◽  
Z. G. Ter-Martirosyan ◽  
A. Z. Ter-Martirosyan

Weed Science ◽  
1991 ◽  
Vol 39 (1) ◽  
pp. 104-108 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Lyle M. Rode

Studies were conducted to determine the effect of ensiling and/or rumen digestion by cattle on the germination and viability of several common weed species. Seed survival of grass species subjected to ensiling and/or rumen digestion tended to be less than that of broadleaf species. Downy brome, foxtail barley, and barnyardgrass were nonviable after either ensiling for 8 weeks or rumen digestion for 24 h. Some green foxtail (17%) and wild oats (0 to 88%) seeds survived digestion in the rumen but were killed by the ensiling process. Varying percentages of seeds of kochia, redroot pigweed, common lambsquarters, wild buckwheat, round-leaved mallow, and field pennycress remained viable after ensiling (3 to 30%), rumen digestion (15 to 98%), and ensiling plus rumen digestion (2 to 19%). A time course study of rumen digestion indicated that loss of seed viability often was not a gradual process. With some species, there was an initial lag phase while degradation of the protective seed coat likely occurred, followed by a rapid decline in embryo viability. The diet fed to livestock appeared to affect viability losses caused by rumen digestion. Estimates of seed survival with varying rates of passage through the rumen due to differing ratios of grain to forage in the diet are presented.


2019 ◽  
Vol 89 (19-20) ◽  
pp. 4162-4172 ◽  
Author(s):  
Mahuya Ghosh ◽  
Guda Venkatappa Rao ◽  
Syamal Kanti Chakrabarti ◽  
Supriya Pal ◽  
Uma Sankar Sarma

To enhance the life of jute geotextiles (JGTs) for road applications, new types of JGT fabrics were developed following two different routes, viz., (a) rot-proof treatment of 100% JGT fabric and (b) preparation of jute–polypropylene blended JGT fabrics. The biodegradability behavior of these fabrics along with grey JGTs was studied for different durations up to 12 months in three categories of saturated soils, namely, Guwahati Lateritic Red soil, Kolkata Alluvial Silty soil and Andhra Pradesh Black Cotton soil and water separately. Biodegradability assessment was done through residual tensile strength study and microscopic study. The experimentation reveals that rate of biodegradation of the JGTs is different in the three experimental saturated soils and water. Saturated Black Cotton soil was found to be the most detrimental medium. Studies were also carried out to understand this differential degradation behavior of JGTs in different soils. This indicates that the pH of soil media and microbial population growing capability of the respective soils both affect the level of degradation of the JGT fabrics. Jute–synthetic blended JGT is essential for Black Cotton soil road-subgrade, while grey JGT and treated JGT can be used in Lateritic soil and Silty soil, respectively.


Sign in / Sign up

Export Citation Format

Share Document