THE FLOW PROPERTIES OF CERVICAL SECRETIONS IN THE COW AS RELATED TO CERTAIN PHYSIOLOGICAL CONDITIONS

1953 ◽  
Vol 9 (2) ◽  
pp. 160-169 ◽  
Author(s):  
F. A. GLOVER ◽  
G. W. SCOTT BLAIR

The flow properties of bovine cervical secretions were measured in a constant speed emptying capillary micro-rheometer (the 'rheoscope'). Ten cows were studied for three oestrous cycles and onwards through the complete gestation period (875 readings). In a subsidiary special study of the changes in secretions occurring during the first 2 months of pregnancy, forty animals were examined (480 readings). The variations in the flow properties so measured were found to be correlated with the physiological changes accompanying the oestrous cycle and pregnancy. Characteristic differences were noted in cases of abortion and subfertility. It is suggested that the flow properties are governed by the ovarian hormones and that the measurements represent the resultant effect of the levels of oestrogen and progesterone in the body.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Abas Sabouni ◽  
Camerin Hahn ◽  
Sima Noghanian ◽  
Edward Sauter ◽  
Tim Weiland

This paper addresses the changes in the physical characteristics (temperature and water/blood content) of breast tissue under different physiological conditions. We examined ex vivo specimens of breast tissue excised at the time of surgery to study the effects of physiological conditions on dielectric properties. We observed that the dielectric properties strongly depend on tissue physiological state. When the biological tissues undergo physiological changes, such as those due to disease or those induced by external changes such as variations in the environmental temperature, the microscopic processes deviate from their normal state and impact the overall dielectric properties. This suggests that microwave imaging might be used to monitor the physiological conditions of the body.


2001 ◽  
Vol 40 (01) ◽  
pp. 31-37 ◽  
Author(s):  
U. Wellner ◽  
E. Voth ◽  
H. Schicha ◽  
K. Weber

Summary Aim: The influence of physiological and pharmacological amounts of iodine on the uptake of radioiodine in the thyroid was examined in a 4-compartment model. This model allows equations to be derived describing the distribution of tracer iodine as a function of time. The aim of the study was to compare the predictions of the model with experimental data. Methods: Five euthyroid persons received stable iodine (200 μg, 10 mg). 1-123-uptake into the thyroid was measured with the Nal (Tl)-detector of a body counter under physiological conditions and after application of each dose of additional iodine. Actual measurements and predicted values were compared, taking into account the individual iodine supply as estimated from the thyroid uptake under physiological conditions and data from the literature. Results: Thyroid iodine uptake decreased from 80% under physiological conditions to 50% in individuals with very low iodine supply (15 μg/d) (n = 2). The uptake calculated from the model was 36%. Iodine uptake into the thyroid did not decrease in individuals with typical iodine supply, i.e. for Cologne 65-85 μg/d (n = 3). After application of 10 mg of stable iodine, uptake into the thyroid decreased in all individuals to about 5%, in accordance with the model calculations. Conclusion: Comparison of theoretical predictions with the measured values demonstrated that the model tested is well suited for describing the time course of iodine distribution and uptake within the body. It can now be used to study aspects of iodine metabolism relevant to the pharmacological administration of iodine which cannot be investigated experimentally in humans for ethical and technical reasons.


Author(s):  
Tamilarasi G P ◽  
Sabarees G

Oxidation is an essential reaction in the human body, which determines the expression of proteins in the body. This results in the altered expression like rapid growth resulting in cancers and other disorders. Many synthetic drugs are available in the market that is effective in limiting the free radical generation and the reaction of radicals with cells. Unfortunately, all those synthetic drugs were found to cause side effects and adverse effects in the body. But given the accuracy of the predictability of the results and administration, this research focuses on testing the anti-oxidant efficiency in rat models testing the biochemical parameters. Investigations have also been done on the anti-oxidant activity of Tectona, but every research was concentrated to prove the anti-oxidant activity only. extract had been tested for anti-oxidant activity by estimating various tissue parameters and it showed better activity. As predicted, there is a significant difference in the and results which can be explained are due to the physiological conditions that exist inside the body.


2020 ◽  
Vol 20 (13) ◽  
pp. 1142-1153 ◽  
Author(s):  
Sreyashi Chandra ◽  
Md. Tanjim Alam ◽  
Jhilik Dey ◽  
Baby C. Pulikkaparambil Sasidharan ◽  
Upasana Ray ◽  
...  

Background: The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington’s disease (HD). Objective: We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. Methods: In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. Results: In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. Conclusion: We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.


1984 ◽  
Vol 100 (3) ◽  
pp. 271-275 ◽  
Author(s):  
G. K. Hulse ◽  
G. J. Coleman ◽  
D. L. Copolov ◽  
J. A. Clements

ABSTRACT The aim of this study was twofold: (1) to document changes in levels of immunoreactive β-endorphin (Ir-β-EP) in the hypothalamus, anterior pituitary gland, neurointermediate lobe and plasma during the oestrous cycle of the rat and (2) to investigate stress-induced changes in plasma Ir-β-EP at different stages of the oestrous cycle. Evidence was found that Ir-β-EP levels in the hypothalamus, anterior pituitary gland and plasma are not constant during the oestrous cycle and that the Ir-β-EP response to stress is a function of the phase of the oestrous cycle at which stress is applied. It is suggested that fluctuations in ovarian hormones may influence oestrous Ir-β-EP levels both under normal conditions and after exposure to stress. J. Endocr. (1984) 100, 271–275


2020 ◽  
Vol 5 (1) ◽  
pp. 30-39
Author(s):  
Rusmanto ◽  
Rola Angga Lardika ◽  
Novri Gazali

Lung vital capacity is the status of physiological conditions associated with the ability to treat respiration together with the increasing of physical fitness, so lung vital capacity is a process involving the mechanism of the heart and blood vessels and blood which aims to provide O2 to cells in the body and transport CO2 out of body. The purpose of this study is to determine the correlation between lung vital capacity and the physical fitness level of Pendor Football Athletes from Universitas Riau. The collecting of data in this study is data from lung vital capacity tests and physical fitness with a sample of 20 athletes. Analysis of the data that used to process data is Product Moment correlation. For determining the significance of data, it uses formulation of t distribution. The results that obtained from lung vital capacity have a significant correlation with the level of physical fitness, this is indicated by the results obtained by r count (0622) > r table (α = 0.05) = 0.456. Meanwhile, t distribution test is obtained the result of t count (3,369) > t  table (1,734). So H0 is refused  and Ha is accepted. Thus it can be concluded that there is a significant correlation between the lung vital capacity (x) and the level of physical fitness (y).


2020 ◽  
Author(s):  
Congxiao Zhang ◽  
Fusheng Sun ◽  
Congjiang Zhang ◽  
Yunjing Luo

Abstract Background: Insulin is one of the most important versatile hormones that is central to regulating the energy and glucose metabolism in the body. There has been accumulating evidence supporting that diabetes was associated with peroxynitrite and protein nitration, and insulin nitration induced by peroxynitrite affected its biological activity. Methods: In this paper, the kinetics of insulin nitration by peroxynitrite in physiological conditions was studied by the stopped flow technique. Results: We determined the values of the reactive rate constants of peroxynitrite decomposition and peroxynitrite-induced tyrosine nitration in the presence of insulin. The activation energy of peroxynitrite decomposition and 3-nitrotyrosine yield in the presence of insulin is 48.8 kJ·mol−1 and 42.7 kJ·mol−1 respectively. Conclusions: It is inferred that the glutamate residue of insulin accelerated peroxynitrite decomposition and tyrosine nitration by reducing the activation energy of reactions. The results could be beneficial for exploring the molecular mechanism of diabetes and offering a new target for diabetes therapies.


2020 ◽  
Vol 24 (3) ◽  
pp. 253-261
Author(s):  
M. A Merkulova ◽  
M. M Lapkin

Physiological value is one of the factors affecting the effectiveness of human activities. Currently, there is no single approach to assess the physiological value of human behavior. The article presents data on the role of the physiological cost of human activity, estimated by the indicators of mathematical analysis of heart rate, in the reproduction of matrix visual images. The article puts forward the position that the physiological cost of activity is an important factor in the formation of unequal performance. At the same time, the physiological cost is reflected not only in shifts in a number of physiological indicators when the subjects perform a particular activity, but in the nature and levels of expression of correlation relationships between indicators of this activity and indicators that reflect physiological changes in the body at the same time.


Author(s):  
Angela Duckworth ◽  

For more than a century, scientists have known that acute stress activates the fight-or-flight response. When your life is on the line, your body reacts instantly: your heart races, your breath quickens, and a cascade of hormones sets off physiological changes that collectively improve your odds of survival. More recently, scientists have come to understand that the fight-or-flight response takes a toll on the brain and the body—particularly when stress is chronic rather than acute. Systems designed to handle transient threats also react to stress that occurs again and again, for weeks, months, or years. It turns out that poverty, abuse, and other forms of adversity repeatedly activate the fight-or-flight response, leading to long-term effects on the immune system and brain, which in turn increase the risk for an array of illnesses, including asthma, diabetes, arthritis, depression, and cardiovascular disease. Pioneering neuroscientist Bruce McEwen called this burden of chronic stress “allostatic load.”


Sign in / Sign up

Export Citation Format

Share Document