scholarly journals Anti-apoptotic effects of 3,5,3′-tri-iodothyronine in mouse hepatocytes

2006 ◽  
Vol 191 (2) ◽  
pp. 447-458 ◽  
Author(s):  
O A Sukocheva ◽  
D O Carpenter

The present study demonstrates that 3,5,3′-tri-iodothyronine (T3) in physiological dose range inhibits tumor necrosis factor α(TNFα)/Fas-induced apoptosis in mouse hepatocytes. T3 pretreatment prevented Fas-induced early stage of apoptosis signs assessed by flow cytometry analysis of the annexin V positive cell population. T3 attenuated TNFα/Fas-induced cleavage of caspase-8 and DNA fragmentation. We found that T3 exerted its anti-apoptotic effects by mobilization of several non-genomic mechanisms independent of transcriptional activity. Inhibition of protein kinase A (PKA), extracellular signal-regulated kinase (ERK), and Na+/H+ exchanger blocked T3-dependent anti-apoptotic effects indicating an involvement of these intracellular targets into T3-induced signaling cascade. Furthermore, physiological concentrations of T3, but not reverse T3, caused increases in intracellular cAMP content and activated PKA. T3 markedly induced phosphorylation of ERK. We also detected T3-dependent intracellular alkalinization that abolished TNFα-induced acidification. PKA inhibitor KT-5720 blocked T3-induced activation of ERK and intracellular alkalinization confirming the upstream position of PKA signaling. We further detected that hepatocytes from hypothyroid mice are more sensitive to TNFα/Fas-induced apoptosis than euthyroid animals in vivo. Together, these findings imply that T3 triggers PKA- and ERK-regulated intracellular pathways capable of driving and ensuring hepatocytes survival in the presence of death receptor ligand-induced damage under chronic inflammatory conditions.

1982 ◽  
Vol 243 (2) ◽  
pp. G117-G126
Author(s):  
R. Fogel ◽  
G. W. Sharp ◽  
M. Donowitz

The effects of chloroquine diphosphate, a drug with "'membrane-stabilizing" properties, were studied on basal ileal absorption and on ileal secretion induced by increased intracellular cAMP levels and calcium (serotonin). The studies were performed on rat (in vivo) and rabbit ileum (in vitro). Intraluminal chloroquine (10(-4) M) reversed cholera toxin- and theophylline-induced secretion in rat ileum but did not alter the cholera toxin- and theophylline-induced increases in cAMP content. Addition of chloroquine (10(-4) M) to the mucosal surface of rabbit ileum did not alter basal active electrolyte transport or the serotonin-induced decreased Na and Cl absorption but inhibited the theophylline-induced C1 secretion. Addition of chloroquine (10(-4)) M) to the serosal surface stimulated net Na and Cl absorption. This effect may involve intracellular calcium. Chloroquine increased the rabbit ileal calcium content and decreased 45Ca2+ influx from the serosal surface. Both the mucosal and serosal effects of chloroquine described led to a net increase in absorptive function of the intestine and should prove useful in developing treatment of diarrheal diseases.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1780 ◽  
Author(s):  
Zaira Tavarez-Santamaría ◽  
Nadia J. Jacobo-Herrera ◽  
Leticia Rocha-Zavaleta ◽  
Alejandro Zentella-Dehesa ◽  
Beatriz del Carmen Couder-García ◽  
...  

Parthenium argentatum (Gray), commonly known as guayule, has been used to obtain natural rubber since the beginning of the 20th century. Additionally, the so called “resin” is a waste product derived from the industrial process. The cycloartane-type triterpene Argentatin A (AA) is one of the main constituents of the industrial waste resin. In this study we evaluated the AA anticancer activity both in vitro and in vivo in the HCT116 colon cancer cells. The apoptosis promotion of AA was assessed by the annexin V/propidium iodide (PI) assay. The senescence was evaluated for SA-β-galactosidase, and PCNA was used as a marker of proliferation. Its antitumor activity was evaluated using a xenograft mouse model. The results indicated that AA-induced apoptosis in HCT-116 cells and was positively stained for SA-β-galactosidase. In the xenografted mice test, the administration of AA at the dose of 250 mg/kg three times a week for 21 days reduced tumor growth by 78.1%. A comparable tumor reduction was achieved with cisplatin at the dose of 2 mg/kg administered three times a week for 21 days. However, nude mice treated with AA did not lose weight, as they did remarkably when treated with cisplatin. Furthermore, the animals treated with AA showed similar blood profiles as the healthy control group. These data indicate the low toxicity of AA compared to that shown by cisplatin.


2009 ◽  
Vol 2 ◽  
pp. JCD.S3660
Author(s):  
Hang Fai Kwok ◽  
Julie A. Gormley ◽  
Christopher J. Scott ◽  
James A. Johnston ◽  
Shane A. Olwill

The study of death receptor family induced apoptosis has gained momentum in recent years with the knowledge that therapeutic antibodies targeting DR4 and DR5 (death receptor's 4 and 5) have proved efficacious in multiple clinical trials. The therapeutic rationale is based on targeting and amplifying a tumour tissues normal cell death programme (apoptosis). While advances in the targeting of DR4 and DR5 have been successful the search for an agonistic antibody to another family member, the Fas receptor, has proven more elusive. This is partly due to the differing in vitro and in vivo characteristics of individual antibodies. In order to induce Fas targeted cell death an antibody must be capable of binding to and trimerising the receptor. It has been shown that antibodies capable of performing this function in vivo, with the assistance of tumour associated cells, do not always induce apoptosis in vitro. As a result the use of current methodologies to detect functional antibodies in vitro may have dismissed potential therapeutic candidates ('false negative'). Here we report a novel high throughput screening technique which artificially cross-links antibodies bound to the Fas receptor. By combining this process with Annexin-V and Prodidium Iodide (PI) staining we can select for antibodies which have the potential to induce apoptosis in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3842-3842
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Madhavi Bandi ◽  
Noopur Raje ◽  
Robert L Schlossman ◽  
...  

Abstract Abstract 3842 Poster Board III-778 Background and Rationale Vascular disrupting agents (VDAs) act via selectively disrupting established tumor vasculature and have shown remarkable clinical success as anti-cancer therapies. NPI-2358 is a novel VDA with a distinct structure and mechanism of action from other available VDAs. NPI-2358 binds to the colchicine-binding site of beta-tubulin preventing polymerization and disrupting the cytoplasmic microtubule network, thereby causing loss of vascular endothelial cytoskeletal function, and inducing cytotoxicity in cancer cells. Here, we examined the anti-angiogenic and anti-tumor activity of NPI-2358 in multiple myeloma (MM) cells using both in vitro and in vivo model systems. Material and Methods We utilized MM.1S, MM.1R, RPMI-8226, U266, and INA-6 human MM cell lines, as well as purified tumor cells from MM patients relapsing after prior anti-MM therapies. Cell viability/apoptosis assays were performed using MTT, trypan blue exclusion, and Annexin V/PI staining. Angiogenesis was measured in vitro using Matrigel capillary-like tube structure formation assays: Since human vascular endothelial cells (HUVECs) plated onto Matrigel differentiate and form capillary-like tube structures similar to in vivo neovascularization, this assay measures anti-angiogenic effects of drugs/agents. Migration assays were performed using transwell insert assays. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, PARP, Bcl-2, Bax, pJNK and GAPDH. Statistical significance was determined using a Student t test. Results Treatment of MM.1S, RPMI-8226, MM.1R, INA-6, and KMS-12BM with NPI-2358 for 24h induces a dose-dependent significant (P < 0.005) decrease in viability of all cell lines (IC50 range: 5-8 nM; n=3). To determine whether NPI-2358-induced decrease in viability is due to apoptosis, MM cell lines were treated with NPI-2358 for 24h; harvested, and analyzed for apoptosis using Annexin V/PI staining. A significant increase in NPI-2358-induced apoptosis was observed in all MM cell lines (% Annexin V+/PI- apoptotic cells: MM.1S, 48 ± 2.3%; MM.1R, 46.6 ± 3.1%; RPMI-8226, 61.7 ± 4.5%; and INA-6, 59.9 ± 3.2%; P < 0.05; n=3). Importantly, NPI-2358 decreased viability of freshly isolated MM cells from patients (IC50 range: 3-7 nM; P < 0.005), without affecting the viability of normal peripheral blood mononuclear cells, suggesting specific anti-MM activity and a favorable therapeutic index for NPI-2358. Examination of in vitro angiogenesis using capillary-like tube structure formation assay showed that even low doses of NPI-2358 (7 nM treatment for 12h; IC50: 20 nM at 24h) significantly decreased tubule formation in HUVECs (70-80% decrease; P < 0.05). Transwell insert assays showed a marked reduction in serum-dependent migration of NPI-2358-treated MM cells (42 ± 2.1% inhibition in NPI-2358-treated vs. control; P < 0.05). NPI-2358 at the concentrations tested (5 nM for 12h) in the migration assays did not affect survival of MM cells (> 95% viable cells). A similar anti-migration activity of NPI-2358 was noted against HUVEC cells (48 ± 1.7% decrease in migration; P < 0.05). Mechanistic studies showed that NPI-2358-induced apoptosis was associated with activation of caspase-8, caspase-9, caspase-3 and PARP. Importantly, treatment of MM.1S cells with NPI-2358 (5 nM) triggered phosphorylation of c-Jun amino-terminal kinase (JNK), a classical stress response protein, without affecting Bcl-2 family members Bax and Bcl-2. Blockade of JNK using dominant negative strategy markedly abrogated NPI-2358-induced apoptosis. Conclusion Our preclinical data provide evidence for remarkable anti-angiogenic and anti-tumor activity of NPI-2358 against MM cells, without significant toxicity in normal cells. Ongoing studies are examining in vivo anti-MM activity of NPI-2358 in animal models. Importantly, a Phase-1 study of NPI-2358 as a single agent in patients with advanced malignancies (lung, prostrate and colon cancer) has already established a favorable pharmacokinetic, pharmacodynamic and safety profile; and, a Phase-2 study of the combination of NPI-2358 and docetaxel in non-small cell lung cancer showed encouraging safety, pharmacokinetic and activity data. These findings, coupled with our preclinical studies, provide the framework for the development of NPI-2358-based novel therapies to improve patient outcome in MM. Disclosures: Chauhan: Nereus Pharmaceuticals, Inc: Consultancy. Lloyd:Nereus Pharmaceuticals, In: Employment. Palladino:Nereus Pharmaceuticals, Inc: Employment. Anderson:Nereus Pharmaceuticals, Inc: Consultancy.


2004 ◽  
Vol 83 (9) ◽  
pp. 671-676 ◽  
Author(s):  
M. Alikhani ◽  
Z. Alikhani ◽  
D.T. Graves

During periods of periodontal attachment loss, one of the most significant cellular changes is a decrease in the number of fibroblasts. We previously demonstrated that LPS induces apoptosis of fibroblastic cells in vivo, largely through TNF-α. We conducted in vivo experiments by subcutaneous inoculation of LPS in wild-type, TNFR1−/−R2−/−, TNFR1−/−, and TNFR2−/− mice to identify which TNF receptors are involved and the specific caspase pathway activated. LPS stimulated apoptosis through TNFR1 but not TNFR2, which was accompanied by the induced expression of 12 apoptotic genes. Fluorometric studies demonstrated that LPS in vivo significantly increased caspase-8 and caspase-3 activity, which was also dependent on TNF receptor signaling. By the use of specific caspase inhibitors, caspases-3 and -8 were shown to play an important role in LPS-induced apoptosis in vivo. Thus, LPS acts through TNFR1 to modulate the expression of apoptotic genes and activate caspases-3 and -8.


2005 ◽  
Vol 153 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Sevim Gullu ◽  
Rifat Emral ◽  
Mehmet Bastemir ◽  
Arthur B Parkes ◽  
John H Lazarus

Background: Statins have apoptotic effects on many cell types. Hashimoto’s thyroiditis (HT) is an autoimmune disease in which cell-mediated autoimmune mechanisms are pathogenetically involved. Objective: The aim of this study was to evaluate the in vivo effects of Simvastatin on thyroid function, lymphocyte subtypes and also to investigate the apoptotic effects of Simvastatin, Mevastatin, Pravastatin and Cerivastatin on lymphocytes from patients with HT. Methods: In the first part of the study, 11 patients with HT and subclinical hypothyroidism (SH) were given Simvastatin (20 mg/day) for 8 weeks. Ten patients with SH and HT served as the control group. No treatment was given to controls. Thyroid function, C-reactive protein (CRP) levels and lymphocyte subtypes of both groups were determined before the study and after 8 weeks. In the second part of the study, the apoptotic effects of statins on lymphocytes were evaluated in patients with HT (n = 10) and normal subjects (n = 10) in vitro. Apoptosis was investigated by using Annexin-V and propidium iodide. Lymphocytes from patients and controls were incubated with different concentrations of Simvastatin, Cerivastatin, Mevastatin and Pravastatin. Results: An increase in serum free tri-iodothyronine and free thyroxine levels and a decrease in TSH levels were observed (P < 0.05) with Simvastatin treatment. CD4 + cells and B lymphocytes increased whilst CD8 + cells, natural killer cells and activated T lymphocytes decreased significantly in the treatment group (P < 0.05). The CRP level of the group also decreased with Simvastatin but it did not reach significance (P = 0.057). None of parameters was found to be different from the baseline in the control group. In in vitro experiments, apoptosis was observed in CD3 + (both in CD8 + and CD4 + cells) with all statins in both patient and control samples. Mevalonate, which was used in experiments, reversed apoptosis in some but not all samples. Conclusions: The results of this study suggested that Simvastatin is an immune modulatory agent and improves thyroid function in patients with HT. This effect is probably mediated via lymphocyte apoptosis as demonstrated with in vitro experiments and is not confined to Simvastatin since Mevastatin, Pravastatin and Cerivastatin also induced apoptosis in lymphocytes.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6287
Author(s):  
Lea Beltzig ◽  
Björn Stratenwerth ◽  
Bernd Kaina

Temozolomide (TMZ), a first-line drug in glioma therapy, targets the tumor DNA at various sites. One of the DNA alkylation products is O6-methylguanine (O6MeG), which is, in the low dose range of TMZ, responsible for nearly all genotoxic and cytotoxic effects relevant for cancer therapy. There is, however, a dispute regarding whether the TMZ concentration in the tumor tissue in patients is sufficient to elicit a significant cytotoxic or cytostatic response. Although treatment with TMZ occurs repeatedly with daily doses (metronomic dose schedule) and in view of the short half-life of the drug it is unclear whether doses are accumulating. Here, we addressed the question whether repeated low doses elicit similar effects in glioblastoma cells than a high cumulative dose. We show that repeated treatments with a low dose of TMZ (5 × 5 µM) caused an accumulation of cytotoxicity through apoptosis, cytostasis through cellular senescence, and DNA double-strand breaks, which was similar to the responses induced by a single cumulative dose of 25 µM TMZ. This finding, together with the previously reported linear dose–response curves, support the notion that TMZ is able to trigger a significant cytotoxic and cytostatic effect in vivo if the low-dose metronomic schedule is applied.


2019 ◽  
Vol 20 (4) ◽  
pp. 980 ◽  
Author(s):  
Ke-Hung Tsui ◽  
Chen-Pang Hou ◽  
Kang-Shuo Chang ◽  
Yu-Hsiang Lin ◽  
Tsui-Hsia Feng ◽  
...  

Metallothioneins have been viewed as modulators in a number of biological regulations regarding cancerous development; however, the function of metallothionein 3 (MT3) in bladder cancer is unexplored. We determined the regulatory mechanisms and potential function of MT3 in bladder carcinoma cells. Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-qPCR) assays revealed that TSGH-8301 cells expressed more MT3 levels than RT-4, HT1376, and T24 cells. Immunoblot and RT-qPCR assays showed that arsenic (AS2O3) treatments enhanced the gene expression of MT3. Hypoxia induced HIF-1α, HIF-2α, and MT3 expression; furthermore, HIF-2α-knockdown attenuated hypoxic activation on MT3 expression. Ectopic overexpression of MT3 increased cell proliferation, invasion, and tumorigenesis significantly in T24 and HT1376 cells in vitro and in vivo; however, MT3-knockdown in TSGH-8301 cells had the reverse effect. Moreover, knockdown of MT3 enhanced arsenic-induced apoptosis determined by the Annexin V-FITC apoptosis assay. MT3-overexpression downregulated the gene expressions of N-myc downstream regulated gene 1 (NDRG1), N-myc downstream regulated gene 2 (NDRG2), and the mammary serine protease inhibitor (MASPIN) in HT1376 and T24 cells, whereas MT3-knockdown in TSGH-8301 cells had the opposite effect. The experiments indicated that MT3 is an arsenic- and hypoxia-upregulated oncogene that promotes cell growth and invasion of bladder carcinoma cells via downregulation of NDRG1, NDRG2, and MASPIN expressions.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Subhankar Biswas ◽  
Neetinkumar D. Reddy ◽  
B. S. Jayashree ◽  
C. Mallikarjuna Rao

Alteration of epigenetic enzymes is associated with the pathophysiology of colon cancer with an overexpression of histone deacetylase 8 (HDAC8) enzyme in this tissue. Numerous reports suggest that targeting HDAC8 is a viable strategy for developing new anticancer drugs. Flavonols provide a rich source of molecules that are effective against cancer; however, their clinical use is limited. The present study investigated the potential of quercetin and synthetic 3-hydroxyflavone analogues to inhibit HDAC8 enzyme and evaluated their anticancer property. Synthesis of the analogues was carried out, and cytotoxicity was determined using MTT assay. Nonspecific and specific HDAC enzyme inhibition assays were performed followed by the expression studies of target proteins. Induction of apoptosis was studied through annexin V and caspase 3/7 activation assay. Furthermore, the analogues were assessed against in vivo colorectal cancer. Among the synthesized analogues, QMJ-2 and QMJ-5 were cytotoxic against HCT116 cells with an IC50 value of 68 ± 2.3 and 27.4 ± 1.8 µM, respectively. They inhibited HDAC enzyme in HCT116 cells at an IC50 value of 181.7 ± 22.04 and 70.2 ± 4.3 µM, respectively, and inhibited human HDAC8 and 1 enzyme at an IC50 value of <50 µM with QMJ-5 having greater specificity towards HDAC8. A reduction in the expression of HDAC8 and an increase in acetyl H3K9 expression were observed with the synthesized analogues. Both QMJ-2 and QMJ-5 treatment induced apoptosis through the activation of caspase 3/7 evident from 55.70% and 83.55% apoptotic cells, respectively. In vivo studies revealed a significant decrease in colon weight to length ratio in QMJ-2 and QMJ-5 treatment groups compared to DMH control. Furthermore, a reduction in aberrant crypt foci formation was observed in the treatment groups. The present study demonstrated the potential of novel 3-hydroxyflavone analogues as HDAC8 inhibitors with anticancer property against colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document