scholarly journals Briquetting of porous alumina-containing materials with organic binders

2021 ◽  
Vol 64 (5) ◽  
pp. 323-329
Author(s):  
V. V. Aksenova ◽  
S. A. Alimbaev ◽  
A. V. Pavlov ◽  
R. M. Mustafin

Waste from corundum production in the form of porous alumina sludge is a promising material for providing ferrous metallurgy with cheap alumina-containing slag-formers. However, the direct feeding of the pulverized materials to the steelmaking furnace generally results in a significant carryover of such materials with waste gases. This paper considers the possibility of making briquettes from porous sludge of corundum production by cold briquetting using various common binders (molasses, cement, powder based on polyacrylamide, emulsion based on polyvinyl acetate). A comparison of the features of cold briquetting of powdered porous materials (slimes from the production of electrocorundum) and dispersed crystalline materials (fines of chrome ore) was made. Experiments were carried out to determine the impact strength of briquettes on different binder (“cold” strength) and tests to determine the “hot” strength (by the “thermal shock” test method). The authors have determined the consumption of the binder required to obtain satisfactory characteristics of briquettes from corundum slimes and from chrome ore fines. A technique has been developed and a mechanism for the binding of particles of loose and crystalline materials has been determined during briquetting using polyacrylamide powder. The destruction of a briquette of loose materials occurs mainly along the grains of the most porous material, and briquettes of crystalline materials are destroyed along the boundaries of the grains glued with a binder. For porous materials, the binder consumption increases more than twice as compared to briquetting on the same binder crystalline bodies of a fine fraction, and the binder must necessarily impregnate the entire volume of the porous material.

2019 ◽  
Vol 31 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Guisheng Gan ◽  
Da-quan Xia ◽  
Xin Liu ◽  
Cong Liu ◽  
Hanlin Cheng ◽  
...  

Purpose With continuous concerning on the toxic of element Pb, Pb-free solder was gradually used to replace traditional Sn-Pb solder. However, during the transition period from Sn-Pb to Pb-free solder, mixing of Sn-Pb and Pb-free is inevitable occurred in certain products, and in China where Sn-Pb solder was still used extensively in certain areas especially. Correspondingly, understanding reliability of Sn-Pb solder joints was very important, and further studies were needed. Design/methodology/approach Thermal shock test between −55°C and 125 °C was conducted on Sn-37Pb solder bumps in the BGA package to investigate the microstructure evolution and the growth mechanism of interfacial intermetallic compound (IMC) layer. The effects of thermal shock on the mechanical property and fracture behavior of Sn-37Pb solder bumps were discussed. Findings Pb-rich phase was coarsened and voids were increased at first; Pb-rich phase was refined and voids were decreased secondly with the increase of thermal shock cycles; the shear strength of solder bumps was slightly decreased after thermal shock, but was back up to 73.67MPa at 2,000 cycles; interfacial IMCs of solder bumps was from typical scallop-type into smooth, the composition of IMCs was from Cu6Sn5 into Cu6Sn5 and Cu3Sn after thermal shock with 1,500 and 2,000 cycles; 20.0 per cent of solder bumps at 1,500 cycles and 9.5 per cent of solder bumps at 2,000 cycles were failure respectively. Originality/value Compared with the board level test method, the impact shear test for the single solder bump is more convenient and economical and is actively pursued by the industries. The shear strength of solder bumps was slightly decreased after thermal shock, but was back up to 73.67 MPa at 2,000 cycles; 20.0 per cent of solder bumps at 1,500 cycles and 9.5 per cent of solder bumps at 2,000 cycles were failure.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3613
Author(s):  
Baohui Yang ◽  
Yangjie Zuo ◽  
Zhengping Chang

Foams are widely used in protective applications requiring high energy absorption under impact, and evaluating impact properties of foams is vital. Therefore, a novel test method based on a shock tube was developed to investigate the impact properties of closed-cell polyethylene (PE) foams at strain rates over 6000 s−1, and the test theory is presented. Based on the test method, the failure progress and final failure modes of PE foams are discussed. Moreover, energy absorption capabilities of PE foams were assessed under both quasi-static and high strain rate loading conditions. The results showed that the foam exhibited a nonuniform deformation along the specimen length under high strain rates. The energy absorption rate of PE foam increased with the increasing of strain rates. The specimen energy absorption varied linearly in the early stage and then increased rapidly, corresponding to a uniform compression process. However, in the shock wave deformation process, the energy absorption capacity of the foam maintained a good stability and exhibited the best energy absorption state when the speed was higher than 26 m/s. This stable energy absorption state disappeared until the speed was lower than 1.3 m/s. The loading speed exhibited an obvious influence on energy density.


2020 ◽  
Vol 9 (1) ◽  
pp. 922-933
Author(s):  
Qing’e Wang ◽  
Kai Zheng ◽  
Huanan Yu ◽  
Luwei Zhao ◽  
Xuan Zhu ◽  
...  

AbstractOil leak from vehicles is one of the most common pollution types of the road. The spilled oil could be retained on the surface and spread in the air voids of the road, which results in a decrease in the friction coefficient of the road, affects driving safety, and causes damage to pavement materials over time. Photocatalytic degradation through nano-TiO2 is a safe, long-lasting, and sustainable technology among the many methods for treating oil contamination on road surfaces. In this study, the nano-TiO2 photocatalytic degradation effect of road surface oil pollution was evaluated through the lab experiment. First, a glass dish was used as a substrate to determine the basic working condition of the test; then, a test method considering the impact of different oil erosion degrees was proposed to eliminate the effect of oil erosion on asphalt pavement and leakage on cement pavement, which led to the development of a lab test method for the nano-TiO2 photocatalytic degradation effect of oil pollution on different road surfaces.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1091 ◽  
Author(s):  
Dengke Li ◽  
Daoqing Chang ◽  
Bilong Liu

The diffuse sound absorption was investigated theoretically and experimentally for a periodically arranged sound absorber composed of perforated plates with extended tubes (PPETs) and porous materials. The calculation formulae related to the boundary condition are derived for the periodic absorbers, and then the equations are solved numerically. The influences of the incidence and azimuthal angle, and the period of absorber arrangement are investigated on the sound absorption. The sound-absorption coefficients are tested in a standard reverberation room for a periodic absorber composed of units of three parallel-arranged PPETs and porous material. The measured 1/3-octave band sound-absorption coefficients agree well with the theoretical prediction. Both theoretical and measured results suggest that the periodic PPET absorbers have good sound-absorption performance in the low- to mid-frequency range in diffuse field.


2014 ◽  
Vol 919-921 ◽  
pp. 795-799
Author(s):  
Gai Qing Dai ◽  
Dong Fang Tian ◽  
Yao Ruan ◽  
Lang Tian ◽  
You Le Wang

A new soil water characteristic curve (SWCC) experiment contemplating urea concentration is presented in the paper. We focus on the impact of the SWCC considering urea concentration test method for materials selection and introduction, experimental results, and finally, we have conducted some experiments of SWCC and obtained some valuable data which could affect urea concentration. By using linear fitting, an exponential function between water content and suction and urea concentration is established.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Matthias Galinsky ◽  
Ulf Sénéchal ◽  
Cornelia Breitkopf

The microstructure of porous materials used in heterogeneous catalysis determines the mass transport inside networks, which may vary over many length scales. The theoretical prediction of mass transport phenomena in porous materials, however, is incomplete and is still not completely understood. Therefore, experimental data for every specific porous system is needed. One possible experimental technique for characterizing the mass transport in such pore networks is pulse experiments. The general evaluation of experimental outcomes of these techniques follows the solution of Fick’s second law where an integral and effective diffusion coefficient is recognized. However, a detailed local understanding of diffusion and sorption processes remains a challenge. As there is lack of proved models covering different length scales, existing classical concepts need to be evaluated with respect to their ability to reflect local geometries on the nanometer level. In this study, DSMC (Direct Simulation Monte Carlo) models were used to investigate the impact of pore microstructures on the diffusion behaviour of gases. It can be understood as a virtual pulse experiment within a single pore or a combination of different pore geometries.


Author(s):  
S. H. Chan ◽  
M. F. White

Abstract Measurements have been taken on an experimental rotor-bearing test rig which consists of a full size gas turbine shaft supported by two five-pad tilting-pad journal bearings. The impact test method was applied by exciting one end of the shaft in-situ by means of a hammer blow. Impact forces and response displacements were collected and analysed with suitable corrections for runout effect. Averaged frequency response spectra thus obtained were used in a parameter estimation procedure to calculate the dynamic coefficients of the tested tilting-pad journal bearing. An analytical single degree-of-freedom model was employed and one of the input parameters in the mechanical model, the effective mass, was found to significantly influence the estimated results. The measured stiffness and damping coefficients are compared with results predicted by a bearing design program. Possible sources of discrepancies between experimental and theoretical results are discussed.


2011 ◽  
Vol 422 ◽  
pp. 575-579
Author(s):  
Chong Nian Qu ◽  
Liang Sheng Wu ◽  
Jian Feng Ma ◽  
Yi Chuan Xiao

In this document, using the anti-squeezed force model in the narrow parallel plate when fluid is squeezed, the equivalent stiffness and damping model is derived. It is further verified that it can increase the stiffness and damping while there are oil between the joint interfaces theoretically. Because the contact state of oily porous material can divide into liquid and solid parts, the document supposes that it is correct and effective to think the stiffness and damping of the two parts as shunt connection.


2020 ◽  
Vol 10 (3) ◽  
pp. 364-376
Author(s):  
Luciani Somensi Lorenzi ◽  
Kassio J. Stein ◽  
Luiz Carlos Pinto da Silva Filho

The tests of Brazilian Standard NBR 15575: 2013 are part of the knowledge of the civil construction industry, but the heat and thermal shock test is innovative and does not have a consolidated history. The research objective is to analyze the testing critically and present proposals based on data meta-analysis. Results showed that the test is very inaccurate in describing the procedure and equipment. This study proposed adjustments and innovations in the test to provide more reliable results, but it does not make propositions regarding visual inspection and the number of cycles. The study concluded that the lack of information on the testing has direct responsibility for the results and that the suggested proposals have the potential to be incorporated.


Sign in / Sign up

Export Citation Format

Share Document