scholarly journals Aplicabilidade do modelo matemático SAD-IPH na análise de processos de outorga: o caso da Bacia do Ribeirão Taquaruçu

Author(s):  
FERNÁN VERGARA ◽  
◽  
VIVIANE CHIESA ◽  
CECILIA COSTA ◽  
ROBERTA OLIVEIRA ◽  
...  

In order to issue a water permit, which allows abstraction of water in a given place, the issuer needs to make sure, based on the hydrology of the region, that the amount of water available in the water body is sufficient to meet not only the demand associated with the required entitlement, but also all the existing demands from other users in the basin. This paper aims at evaluating the usefulness of the SAD-IPH mathematical model to simulate water demand scenarios in the Ribeirão Taquaruçu basin, located in the city of Palmas, state of Tocantins. Simulations provided by the SAD-IPH model indicate that the balance between water availability and demand is already critical in some parts of the basin, especially during the dry season, and the situation worsens over time. These results clearly suggest the local water utility needs to search for new water sources to meet the growing demand, mainly during the dry season. Results show the mathematical tool used in the analysis provides new and valuable information to decision makers (water resources institutions and river basin committees), potentially reducing the risk of making bad decisions. Additionally, as a water security measure, it is crucial to enforce the preservation of sensitive areas in the watershed because there is already an intense occupation in preserved areas next to water sources, a process that is likely to result in water yield reduction, which combined with an increase in the water demand over time, will compromise water security.

2014 ◽  
Vol 11 (7) ◽  
pp. 7229-7253
Author(s):  
C. Stumpp ◽  
A. Ekdal ◽  
I. E. Gönenc ◽  
P. Maloszewski

Abstract. Lagoons are important ecosystems occupying large coastal areas worldwide. Lagoons contain various mixtures of marine and freshwater sources which are highly dynamic in time. However, it often remains a challenge to identify and quantify dynamic changes of water sources, particularly in heterogeneous lagoon systems like the Köycegiz-Dalyan Lagoon (KDL), which is located at the southwest of Turkey on the Mediterranean Sea coast. The objective of this study was to quantify different contributions of potential water sources i.e. surface water, groundwater and seawater in the lagoon and how these water sources changed over time and space. In the wet and dry season stable isotopes of water, chloride concentration (Cl-) and salinity were measured in two depths in the lagoon and surrounding water bodies (sea, lake, groundwater). Different components of water sources were quantified with a three component endmember mixing analysis. Differences in Cl- and stable isotopes over time indicated the dynamic behaviour of the system. Generally, none of the groundwater samples was impacted by water of the Mediterranean Sea. During the wet season, most of the lagoon water (>95%) was influenced by freshwater and vertically well mixed. During the dry season, high Cl- in the deeper sampling locations indicated a high contribution of marine water throughout the entire lagoon system due to salt water intrusion. However, a distinct layering in the lagoon was obvious from low Cl- and depleted isotope contents close to the surface supporting freshwater inflow into the system even during the dry season. Besides temporal dynamics also spatial heterogeneities were identified. Changes in water sources were most evident in the main lagoon channel compared to more isolate lagoon lakes, which were influenced by marine water even in the wet season, and compared to side branches indicating slower turnover times. We found that environmental tracers helped to quantify contributions of different water sources in the Köycegiz-Dalyan Lagoon which is a highly dynamic and heterogeneous groundwater dependent ecosystem.


2021 ◽  
pp. 2150001
Author(s):  
Mohammad Ali ◽  
Jingjing Wang ◽  
Heather Himmelberger ◽  
Jennifer Thacher

A key issue facing U.S. water utilities is that while costs are generally fixed and increasing over time, the revenue is typically variable and has generally been decreasing/dampening over time, making it harder to maintain fiscal sustainability. Based on a comprehensive review of the relevant literature, we highlight the major factors that can potentially impact the fiscal sustainability of a water utility from an economic perspective. Furthermore, using numerical examples and data from North Carolina, we critically examine which of these factors actually contribute to the fiscal unsustainability of water utilities. We conclude that decreases in demand and increases in costs are the two primary driving forces. Particularly, rate increases cannot be attributed as a determinant of fiscal unsustainability because of the inelastic nature of water demand. Finally, we also highlight strategies for U.S. water utilities to improve their fiscal sustainability.


2014 ◽  
Vol 18 (12) ◽  
pp. 4825-4837 ◽  
Author(s):  
C. Stumpp ◽  
A. Ekdal ◽  
I. E. Gönenc ◽  
P. Maloszewski

Abstract. Lagoons are important ecosystems occupying large coastal areas worldwide. Lagoons contain various mixtures of marine and freshwater sources which are highly dynamic in time. However, it often remains a challenge to identify and quantify dynamic changes of water sources, particularly in heterogeneous lagoon systems like the Köycegiz–Dalyan lagoon (KDL), which is located at the south-west of Turkey on the Mediterranean Sea coast. The objective of this study was to quantify different contributions of potential water sources i.e. surface water, groundwater and seawater in the lagoon and how these water sources changed over time and space. In the wet- and dry-season stable isotopes of water, chloride concentration (Cl-) and salinity were measured in two depths in the lagoon and surrounding water bodies (sea, lake, groundwater). Different components of water sources were quantified with a three component endmember mixing analysis. Differences in Cl- and stable isotopes over time indicated the dynamic behaviour of the system. Generally, none of the groundwater samples was impacted by water of the Mediterranean Sea. During the wet season, most of the lagoon water (> 95%) was influenced by freshwater and vertically well mixed. During the dry season, high Cl- in the deeper sampling locations indicated a high contribution of marine water throughout the entire lagoon system due to saltwater intrusion. However, a distinct layering in the lagoon was obvious from low Cl- and depleted isotope contents close to the surface supporting freshwater inflow into the system even during the dry season. Besides temporal dynamics also spatial heterogeneities were identified. Changes in water sources were most evident in the main lagoon channel compared to more isolate lagoon lakes, which were influenced by marine water even in the wet season, and compared to side branches indicating slower turnover times. We found that environmental tracers helped to quantify highly dynamic and heterogeneous contributions of different water sources in the Köycegiz–Dalyan lagoon.


1994 ◽  
Vol 5 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Vernon L. Scarborough ◽  
Robert P. Connolly ◽  
Steven P. Ross

AbstractThe southern Lowland Maya hilltop center of Kinal is shown to be a human-modified watershed. The broad paved surfaces of the elevated central precinct acted as runoff-catchment areas directing precipitation into gravity-fed channels and reservoirs. In a geographical zone affected by an extended dry season and away from permanent water sources, Kinal demonstrates the components of a rainfall-dependent water-management system characteristic of other large sites in the region.


2021 ◽  
Author(s):  
Hao Xu ◽  
Xu Lian ◽  
Ingrid Slette ◽  
Hui Yang ◽  
Yuan Zhang ◽  
...  

Abstract The timing and length of the dry season is a key factor governing ecosystem productivity and the carbon cycle of the tropics. Mounting evidence has suggested a lengthening of the dry season with ongoing climate change. However, this conclusion is largely based on changes in precipitation (P) compared to its long-term average (P ̅) and lacks consideration of the simultaneous changes in ecosystem water demand (measured by potential evapotranspiration, Ep, or actual evapotranspiration, E). Using several long-term (1979-2018) observational datasets, we compared changes in tropical dry season length (DSL) and timing (dry season arrival, DSA, and dry season end, DSE) among three common metrics used to define the dry season: P < P ̅, P < Ep, and P < E. We found that all three definitions show that dry seasons have lengthened in much of the tropics since 1979. Among the three definitions, P < E estimates the largest fraction (49.0%) of tropical land area likely experiencing longer dry seasons, followed by P < Ep (41.4%) and P < P ̅ (34.4%). The largest differences in multi-year mean DSL (> 120 days) among the three definitions occurred in the most arid and the most humid regions of the tropics. All definitions and datasets consistently showed longer dry seasons in southern Amazon (due to delayed DSE) and central Africa (due to both earlier DSA and delayed DSE). However, definitions that account for changing water demand estimated longer DSL extension over those two regions. These results indicate that warming-enhanced evapotranspiration exacerbates dry season lengthening and ecosystem water deficit. Thus, it is necessity to account for the evolving water demand of tropical ecosystems when characterizing changes in seasonal dry periods and ecosystem water deficits in an increasingly warmer and drier climate.


2017 ◽  
Vol 60 (6) ◽  
pp. 1917-1923
Author(s):  
David V. Carrera-Villacrés ◽  
Iveth Carolina Robalino ◽  
Fabian F. Rodríguez ◽  
Washington R. Sandoval ◽  
Deysi L. Hidalgo ◽  
...  

Abstract. Fog catchers have been successfully applied in several countries around the world. In Ecuador, the Galte communities in the Andean region suffer from water deficits because they are located at an altitude higher than 3500 m above sea level. Rainfall in the area is relatively low, about 600 mm per year, with high evapotranspiration of approximately 615.74 mm per year. This study aimed to install fog catchers in Galte in 2014 and 2015 to help meet the communities’ water needs. The fog catcher system was designed to satisfy the irrigation water demand for local agricultural production, mainly maize, based on estimates using the Blaney-Criddle method. Every day throughout the year, each fog catcher collected 5 to 20 L of water per m2 of catcher area. The results indicate that the fog catcher system can meet about 5% of the local water demand for agricultural production. Keywords: Ecuador, Evaporation, Evapotranspiration, Precipitation, Water deficit.


2018 ◽  
Vol 16 (6) ◽  
pp. 893-903 ◽  
Author(s):  
Tessa Latchmore ◽  
C. J. Schuster-Wallace ◽  
Dan Roronhiakewen Longboat ◽  
Sarah E. Dickson-Anderson ◽  
Anna Majury

AbstractIndigenous communities in Canada are over-represented with respect to poor water quality and water advisories. To date, approaches to solve this water crisis have been founded in the Western Science (WS) context with little to no consultation or dialogue with those communities most impacted, and without regard for culture. A literature review was undertaken to: (i) document Indigenous Knowledge (IK), and perspectives regarding water and (ii) to identify current local water security tools utilized by Indigenous communities. The aim is to provide sound evidence regarding the value of ownership and leadership by Indigenous communities in the context of current and appropriate resources available to (re)claim these roles. Solutions must remain consistent with, and founded upon, traditional Indigenous worldviews and cultural values to ensure sustainable water security. Literature reviewed from the past ten years revealed one overarching creation theme with three water-specific themes in Indigenous communities; namely, water from natural sources, water as a life-giving entity, and water and gender. Ultimately, there needs to be a new framing of local water security with the development of tools which engage IK and WS in order to assess local water security and appropriately inform interventions, policies, regulations and legislation.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1846 ◽  
Author(s):  
Peter Dillon ◽  
Enrique Fernández Escalante ◽  
Sharon B. Megdal ◽  
Gudrun Massmann

Managed aquifer recharge (MAR) is part of the palette of solutions to water shortage, water security, water quality decline, falling water tables, and endangered groundwater-dependent ecosystems. It can be the most economic, most benign, most resilient, and most socially acceptable solution, but frequently has not been implemented due to lack of awareness, inadequate knowledge of aquifers, immature perception of risk, and incomplete policies for integrated water management, including linking MAR with demand management. MAR can achieve much towards solving the myriad local water problems that have collectively been termed “the global water crisis”. This special issue strives to elucidate the effectiveness, benefits, constraints, limitations, and applicability of MAR, together with its scientific advances, to a wide variety of situations that have global relevance. This special issue was initiated by the International Association of Hydrogeologists Commission on Managing Aquifer Recharge to capture and extend from selected papers at the 10th International Symposium on Managed Aquifer Recharge (ISMAR10) held in Madrid, Spain, 20–24 May 2019.


Sign in / Sign up

Export Citation Format

Share Document