scholarly journals Wood-inhabiting macromycete communities in spruce stands on former agricultural land

2021 ◽  
Vol 67 (No. 2) ◽  
pp. 51-65
Author(s):  
Ivan Mihál ◽  
Eva Luptáková ◽  
Martin Pavlík

Wood-inhabiting macromycete (WIM) communities in the ecosystem of uneven-aged spruce stands growing on former agricultural land were investigated in relation to the supply of wood substrate, degree of wood rot, and selected climatic and ecological conditions. Altogether, 58 WIM species were detected at research plots during 2016–2018. The abundance of fruiting bodies and WIM species richness increased from the youngest to the oldest forest stands. The highest numbers of fruiting body abundance were recorded for Gymnopus perforans (11 756), Hypholoma fasciculare (2 971), Coprinellus disseminatus (326), Exidia pithya (318) and Panellus mitis (147). The influence of stand age on WIM abundance was highly significant (P < 0.001), WIM abundance was not affected by precipitation (P > 0.05). The relationships between abundance and air temperature (P < 0.001), species richness and precipitation (P < 0.001), species richness and air temperature (P < 0.001) were highly significant. The most frequent damage to trees was caused by insects and forest animals (81%), which resulted in a high occurrence of resin secretion (70%). The total volume of coarse wood debris (CWD) and the decay rate were not statistically dependent. We confirmed the occurrence of Heterobasidion annosum s.s., H. abietinum s.s., H. parviporum s.s., Armillaria ostoyae s.s. and A. cepistipes s.s. by use of molecular genetic analyses.

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


2021 ◽  
Vol 78 (3) ◽  
Author(s):  
Ana Aza ◽  
Annika Kangas ◽  
Terje Gobakken ◽  
A. Maarit I. Kallio

Abstract • Key message Root and rot (RBR) caused byHeterobasidion parviporumNiemelä & Korhonen andHeterobasidion annosum(Fr.) Bref. damages Fennoscandian spruce stands. In case the rot infection and its severity are unknown, the mere risk of infection should seldom affect the harvest timing. When it does, the gains by harvesting earlier are minimal. • Context It has been suggested that stands infected by RBR should be harvested earlier than the healthy ones. Yet, we must decide on harvest timing decisions without reliable information on the infection. • Aims We studied if harvesting earlier pays off under RBR uncertainty. • Methods We structured the uncertainty with a decision tree and calculated the optimal rotations based on expected net present values. We compared rotation lengths to those of healthy stands and calculated gains from earlier harvesting. • Results The inclusion of RBR-related uncertainty in the model changed the rotation length of only 14–23% of the stands. The average reduction was 1.3–4.7 years. Yet, the gain from harvesting earlier was too low to be considered. • Conclusion In the absence of information on the extent and severity of RBR, it seldom pays off to advance harvests. The value growth in healthy trees tends to compensate for the value reduction due to rot.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Talie Musavi ◽  
Mirco Migliavacca ◽  
Markus Reichstein ◽  
Jens Kattge ◽  
Christian Wirth ◽  
...  

2008 ◽  
Vol 38 (7) ◽  
pp. 1807-1816 ◽  
Author(s):  
Björn Nordén ◽  
Frank Götmark ◽  
Martin Ryberg ◽  
Heidi Paltto ◽  
Johan Allmér

Partial cutting is increasingly applied in European temperate oak-dominated forests for biofuel harvesting, and to counteract succession in protected stands. Effects on biodiversity of these measures need to be carefully evaluated, and species-rich but neglected taxa such as fungi should be considered. We studied the effects of partial cutting on fungal fruiting bodies on woody debris. In 21 closed canopy forests rich in large oaks in Sweden, on average 25%–30% of the basal area was cut. Fruiting bodies were counted and some were collected in treated and control plots before and after treatment. We found 334 basidiomycete and 47 ascomycete species. Species richness of basidiomycetes declined significantly more in treated plots (on average 26%) than in control plots (on average 13%) between seasons. Species richness of ascomycetes increased by 17% in control plots and decreased by 2% in treated plots. Total species richness was significantly reduced on fine woody debris (1–10 cm in diameter), but not on coarse woody debris (>10 cm). Overall species composition did not change significantly as a result of partial cutting, but red-listed species tended to decrease more in treated plots. We suggest that approximately 30% of the stands should not be thinned, and dead stems and fallen branches should not be removed, to favor saproxylic fungi and their associated fauna.


2018 ◽  
Vol 285 (1885) ◽  
pp. 20181240 ◽  
Author(s):  
Xiaojuan Liu ◽  
Stefan Trogisch ◽  
Jin-Sheng He ◽  
Pascal A. Niklaus ◽  
Helge Bruelheide ◽  
...  

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3–20 tree species) and stand age (22–116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha −1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO 2 concentrations and global warming.


2012 ◽  
Vol 18 (4) ◽  
pp. 263 ◽  
Author(s):  
Tom Lewis ◽  
David Taylor ◽  
Scott Swift ◽  
Valerie Debuse

We monitored an area that was revegetated with the goal of restoring a Eucalyptus tereticornis open forest on former agricultural land in central, eastern Queensland. Revegetation involved: (1) planting 60 ha of previously cleared and heavily grazed land with eight local trees species; and (2) removing cattle grazing to encourage natural regeneration in areas where some mature trees remained. We compared the revegetation site to native pasture that had also been previously cleared, with only scattered paddock trees remaining, and continued to be managed for livestock production (an area similar to the revegetation site, prior to planting) and a remnant forest (reference area). Nine years since revegetation began there was some evidence that the revegetated site was diverging from pasture in terms of understorey plant composition, sapling density and topsoil C and N. There was little divergence in terms of plant species richness (native, introduced, grass, forb and woody plant richness), herbaceous biomass and woody plant regeneration. Some monitoring plots were subject to fire (prescribed fire and or wildfire) over the period of monitoring. With increasing time since fire, the richness of native species, introduced species and grass species (both native and introduced) declined, and forb and grass species richness declined with increasing litter biomass, suggesting that the occurrence of fire and the associated removal of litter biomass has a positive influence on herbaceous diversity in this ecosystem. Woody plant regeneration persisted through lignotubers at the revegetation site and at the pasture, but this regeneration was stunted at the pasture presumably due to livestock grazing. Hence areas of former E. tereticornis forest showed promising regenerative capacity where mature trees remained and where livestock grazing was removed.


1999 ◽  
Vol 26 (5) ◽  
pp. 675 ◽  
Author(s):  
P. B. Whitaker ◽  
R. Shine

Encounters between humans and dangerously venomous snakes put both participants at serious risk, so the determinants of such encounters warrant attention. Pseudonaja textilis is a large fast-moving elapid snake responsible for most snakebite fatalities in Australia. As part of a broad ecological study of this species in agricultural land near Leeton, New South Wales, we set out to identify factors influencing the probability that a human walking in farmland would come into close proximity to a brownsnake. Over a three-year period, we walked regular transects to quantify the number and rate of snake encounters, and the proportion of snakes above ground that could be seen. The rate of encounters depended upon a series of factors, including season, time of day, habitat type, weather conditions (wind and air temperature) and shade (light v. dark) of the observers’ clothing. Interactions between factors were also important: for example, the effect of air temperature on encounter probability differed with season and snake gender, and the effect of the observers’ shade of clothing differed with cloud cover. Remarkably, even a highly-experienced observer actually saw <25% of the telemetrically monitored snakes that were known to be active (i.e. above ground) nearby. This result reflects the snakes’ ability to evade people and to escape detection, even in the flat and sparsely vegetated study area. The proportion of snakes that were visible was influenced by the same kinds of factors as described above. Most of the factors biasing encounter rates are readily interpretable from information on other facets of the species’ ecology, and knowledge of these factors may facilitate safer coexistence between snakes and people.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1562
Author(s):  
Iveta Varnagirytė-Kabašinskienė ◽  
Povilas Žemaitis ◽  
Kęstutis Armolaitis ◽  
Vidas Stakėnas ◽  
Gintautas Urbaitis

In the context of the specificity of soil organic carbon (SOC) storage in afforested land, nutrient-poor Arenosols and nutrient-rich Luvisols after afforestation with coniferous and deciduous tree species were studied in comparison to the same soils of croplands and grasslands. This study analysed the changes in SOC stock up to 30 years after afforestation of agricultural land in Lithuania, representing the cool temperate moist climate region of Europe. The SOC stocks were evaluated by applying the paired-site design. The mean mass and SOC stocks of the forest floor in afforested Arenosols increased more than in Luvisols. Almost twice as much forest floor mass was observed in coniferous than in deciduous stands 2–3 decades after afforestation. The mean bulk density of fine (<2 mm) soil in the 0–30 cm mineral topsoil layer of croplands was higher than in afforested sites and grasslands. The clear decreasing trend in mean bulk density due to forest stand age with the lowest values in the 21–30-year-old stands was found in afforested Luvisols. In contrast, the SOC concentrations in the 0–30 cm mineral topsoil layer, especially in Luvisols afforested with coniferous species, showed an increasing trend due to the influence of stand age. The mean SOC values in the 0–30 cm mineral topsoil layer of Arenosols and Luvisols during the 30 years after afforestation did not significantly differ from the adjacent croplands or grasslands. The mean SOC stock slightly increased with the forest stand age in Luvisols; however, the highest mean SOC stock was detected in the grasslands. In the Arenosols, there was higher SOC accumulation in the forest floor with increasing stand age than in the Luvisols, while the proportion of SOC stocks in mineral topsoil layers was similar and more comparable to grasslands. These findings suggest encouragement of afforestation of former agricultural land under the current climate and soil characteristics in the region, but the conversion of perennial grasslands to forest land should be done with caution.


2017 ◽  
Vol 63 (No. 1) ◽  
pp. 1-8 ◽  
Author(s):  
Cukor Jan ◽  
Baláš Martin ◽  
Kupka Ivo ◽  
Tužinský Marek

The paper presents an evaluation of the growth of newly established forest stands on former agricultural land and furthermore describes the state of the upper part of the soils in these stands in comparison with neighbouring grassland in the Orlické hory Mountains. The new Norway spruce stands show an extremely high growth potential, usually significantly higher in comparison with areas forested for more generations/rotations. The formation of the surface humus layer also showed fast progress, the amount of dry mass of soil organic matter reaching values almost typical of permanently forested sites. The soils of newly afforested lands tend to resemble the status of forest soil – there was observed a process of acidification and nutrient depletion, probably connected with accumulation of the tree biomass.


Sign in / Sign up

Export Citation Format

Share Document