scholarly journals Responses of rice yield and the fate of fertilizer nitrogen to soil organic carbon

2017 ◽  
Vol 63 (No. 9) ◽  
pp. 416-421 ◽  
Author(s):  
Peng Weifu ◽  
Zeng Yongjun ◽  
Shi Qinghua ◽  
Huang Shan

Soil organic carbon (SOC) plays a critical role in rice production, but its feedback to the fate of fertilizer nitrogen (N) is not clear. In this study, a pot experiment was conducted to investigate the responses of rice yield and the fate of fertilizer N to different SOC levels using <sup>15</sup>N-labelled urea. The results showed that rice biomass, yield and the total N uptake increased significantly with increasing SOC content. Both rice N uptake from soil and urea increased significantly with increasing SOC content. The recovery rate and residual rate of fertilizer N improved significantly with increasing SOC content, leading to a reduced rate of not-specified fertilizer N. Therefore, it was concluded that high SOC could not only improve rice yield and fertilizer N recovery, but also could increase the retention of fertilizer N and decrease the not-specified N in the paddy soil.

Biochar ◽  
2021 ◽  
Author(s):  
Jing Peng ◽  
Xiaori Han ◽  
Na Li ◽  
Kun Chen ◽  
Jinfeng Yang ◽  
...  

AbstractCombined application of biochar with fertilizers has been used to increase soil fertility and crop yield. However, the coupling mechanisms through which biochar improves crop yield at field scale and the time span over which biochar affects carbon and nitrogen transformation and crop yield are still little known. In this study, a long-term field trial (2013–2019) was performed in brown soil planting maize. Six treatments were designed: CK—control; NPK—application of chemical fertilizers; C1PK—low biochar without nitrogen fertilizer; C1NPK, C2NPK and C3NPK—biochar at 1.5, 3 and 6 t ha−1, respectively, combined with chemical fertilizers. Results showed that the δ15N value in the topsoil of 0–20 cm layer in the C3NPK treatment reached a peak of 291 ‰ at the third year (2018), and demonstrated a peak of 402 ‰ in the NPK treatment in the initial isotope trial in 2016. Synchronously, SOC was not affected until the third to fourth year after biochar addition, and resulted in a significant increase in total N of 2.4 kg N ha−1 in 2019 in C3NPK treatment. During the entire experiment, the 15N recovery rates of 74–80% were observed highest in the C2NPK and C3NPK treatments, resulting in an annual increase in yields significantly. The lowest subsoil δ15N values ranged from 66‰ to 107‰, and the 15N residual rate would take 70 years for a complete decay to 0.001% in the C3NPK. Our findings suggest that biochar compound fertilizers can increase C stability and N retention in soil and improve N uptake by maize, while the loss of N was minimized. Biochars, therefore, may have an important potential for improving the agroecosystem and ecological balance. Graphic abstract


2019 ◽  
Vol 99 (3) ◽  
pp. 345-355
Author(s):  
Richard E. Engel ◽  
Carlos M. Romero ◽  
Patrick Carr ◽  
Jessica A. Torrion

Fertilizer NO3-N may represent a benefit over NH4-N containing sources in semiarid regions where rainfall is often not sufficient to leach fertilizer-N out of crop rooting zones, denitrification concerns are not great, and when NH3 volatilization concerns exist. The objective of our study was to contrast plant-N derived from fertilizer-15N (15Ndff), fertilizer-15N recovery (F15NR), total N uptake, grain yield, and protein of wheat (Triticum aestivum L.) from spring-applied NaNO3 relative to urea and urea augmented with urease inhibitor N-(n-butyl)thiophosphoric triamide (NBPT). We established six fertilizer-N field trials widespread within the state of Montana between 2012 and 2017. The trials incorporated different experimental designs and 15N-labeled fertilizer-N sources, including NaNO3, NH4NO3, urea, and urea + NBPT. Overall, F15NR and 15Ndff in mature crop biomass were significantly greater for NaNO3 than urea or urea + NBPT (P < 0.05). Crop 15Ndff averaged 53.8%, 43.9%, and 44.7% across locations for NaNO3, urea, and urea + NBPT, respectively. Likewise, crop F15NR averaged 52.2%, 35.8%, and 38.6% for NaNO3, urea, and urea + NBPT, respectively. Soil 15N recovered in the surface layer (0–15 cm) was lower for NaNO3 compared with urea and urea + NBPT. Wheat grain yield and protein were generally not sensitive to improvements in 15Ndff, F15NR, or total N uptake. Our study hypothesis that NaNO3 would result in similar or better performance than urea or urea + NBPT was confirmed. Use of NO3-N fertilizer might be an alternative strategy to mitigate fertilizer-N induced soil acidity in semiarid regions of the northern Great Plains.


1994 ◽  
Vol 122 (3) ◽  
pp. 385-391 ◽  
Author(s):  
K. F. Ng Kee Kwong ◽  
J. Deville

SUMMARYThe patterns of N uptake and dry matter synthesis by sugarcane (Saccharum hybrid spp.) were studied at four locations in Mauritius with 15N–labelled ammonium sulphate (100 kg N/ha) applied either in a single dressing in September or in two split applications in September and the following February. More than 80% of the total N recovered at harvest (100–120 kgN/ha) was absorbed by the sugarcane during an active uptake period from October to January. Split application prolonged this active N uptake until April only and had no effect on dry matter accumulation. While total Nabsorbed by above-ground sugarcane showed no decline over time, 10–20 kg N/ha of the 15N–labelled N was lost from the green tops even when the N was applied on two occasions. The fertilizer N losses from above-ground sugarcane were, however, not evident when fertilizer N recovery with time was studied by the difference method. In view of the observed losses of fertilizer N from the aerial parts of sugarcane, measurement of fertilizer N recovery at harvest by the N isotope dilution technique underestimates fertilizer N uptake by sugarcane and attributes too large a fraction of N loss to denitrification/volatilization of NH3.


2009 ◽  
Vol 89 (4) ◽  
pp. 403-411 ◽  
Author(s):  
S S Malhi ◽  
Y K Soon ◽  
S Brandt

Growing season rainfall affects fertilizer N recovery, particularly in semi-arid environments. However, the influence of rainfall distribution during the growing season is not well-understood. We conducted a 7-yr study (from 1997 to 2006) to assess this effect, and that of no-till (NT) vs. conventional tillage (CT), on fertilizer N recovery by spring wheat (Triticum aestivum L.) fertilized with 15N-labelled urea at 40 kg N ha–1 and grown on stubble on a Dark Brown Chernozem soil in Saskatchewan, Canada. Two of the seven experimental years had growing season rainfall close to normal, one was above normal and four were below normal. Tillage treatment did not affect 15N recovery by wheat; however, 15N recovery in the top 15 cm of soil averaged 47% under NT vs. 39% under CT (P = 0.02). Total N and 15N uptakes were most affected by "year" due to variation in growing season rainfall distribution. Excluding an ultra-low value of 3.8% (or 1.5 kg N ha–1) in 2002, due to extreme drought, 15N recovery by wheat averaged 47.5% (range 30–57%), and percent N derived from fertilizer was 12–20%. Rainfall in May correlated significantly with 15N and total N uptake (r = 0.605 and 0.699, respectively). The recovery of 15N in wheat head correlated negatively with June rainfall (r = –0.624), probably because more moisture increased soil N mineralization, which diluted the 15N pool. During grain filling, soil N uptake was 12–30 kg ha–1, compared with negligible amounts (< 7%) of 15N; however, about 15 kg ha–1 of 15N were remobilized vs. 34–74 kg ha–1 of soil N. It is concluded that, in this semi-arid region, fertilizer N uptake is influenced more by rainfall in May than other months of the growth period.Key words: 15N-labelled urea, fertilizer N recovery, N uptake, rainfall, remobilized N, tillage


2016 ◽  
Vol 47 (7) ◽  
pp. 863-874 ◽  
Author(s):  
Lawrence Aula ◽  
Natasha Macnack ◽  
Peter Omara ◽  
Jeremiah Mullock ◽  
William Raun

HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1169e-1169
Author(s):  
Douglas D. Archbold ◽  
Charles T MacKown

Three gel polymers, Hydrosource, REAP, and Agri-gel, wetted with solutions of 15N-ammonium nitrate, were evaluated for controlled release of fertilizer nitrogen (N) to strawberry (Fragaria × ananassa Duch.) in the greenhouse and field. Container-grown plants of `Earliglow' and `Allstar' were harvested every 2 weeks for 8 weeks. Field-grown plants of the same cultivars were collected from matted rows after harvest, and fruit were collected during harvest. Plant and fruit tissues were analyzed for total % N and atom % & 15N, and total fertilizer N recovery was calculated. For the container-grown plants, total % N differed by cultivar, `Earliglow' > `Allstar', and harvest date, declining during 8 weeks. Treatment effects on total % N were observed only in the field study, with Agri-gel showing the highest value. In the greenhouse study, Hydrosource and Agri-gel gave the highest tissue enrichments from fertilizer N. In the field study, REAP and Agri-gel gave the highest enrichments. In spite of the greater tissue enrichments, however, no gel polymer significantly increased total fertilizer N recovery in either study.


2020 ◽  
Vol 56 (5) ◽  
pp. 688-698
Author(s):  
Ali M. Ali

AbstractProximal plant sensing with active canopy sensors offers a leap in the non-destructive assessment of crop agronomic information. For managing fertilizer nitrogen (N), sensor readings must be translated using functional models or algorithms to fertilizer amounts. Six field experiments were conducted in three wheat seasons in the West Nile Delta in Egypt to develop and validate an algorithm based on GreenSeeker canopy reflectance sensor for field-specific fertilizer N management in wheat, which takes into account both spatial and temporal variability of N during the crop growth season. The proposed algorithm is based on the prediction of total N uptake and response index of N uptake determined from normalized difference vegetation index measured by the sensor from plots differing in yield potential as established by applying a range of fertilizer N levels in the four experiments conducted in the first two wheat seasons. The treatments in the two experiments conducted in the third wheat season were designed to define appropriate fertilizer N management prior to applying a sensor-based dose at Feekes 6 stage (jointing stage). The application of 40 and 60 kg N ha−1 at 10 and 30 days after sowing of wheat and a sensor-guided dose of N estimated by using the algorithm developed in this study resulted in yields similar to those obtained by following the general recommendation, but with an average of 66 kg N ha−1 less fertilizer N. These results were also reflected in a substantial increase in N recovery (21.9%) and agronomic (7.7 kg grain kg−1 N) efficiencies compared with the general recommendation, thereby proving the usefulness of the sensor-based algorithm in optimizing fertilizer N management in wheat.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 891E-892
Author(s):  
David R. Sandrock* ◽  
Timothy L. Righetti ◽  
Anita N. Azarenko

Accurate methods for determining the fate and recovery of nitrogen (N) fertilizer applied to container-grown nursery crops are essential to comply with regulations and develop innovative fertilizer programs. The objectives of this study were (i) to use 15N techniques to determine the fate of fertilizer N, (ii) to compare nonisotopic and isotopic methods of determining N recovery, and (iii) to determine the relative importance of fertilizer and non-fertilizer N at rates of 25, 50, 100, 200, and 300 mg·L-1 in container-grown Euonymus alatus (Thunb.) Sieb., Cornus sericea L., and Weigela florida (Bunge) A. DC. In all species, root and shoot N increased with N rate, and at each rate more N was stored in the roots than in the shoots. Estimation of N recovery determined by the total N method (Kjeldahl N/applied N) was significantly higher for all species and at each N rate than estimation of N recovery determined by the labeled fertilizer N method (labeled N/total applied N). Increasing fertilizer rates up to 100 mg·L-1 resulted in increased uptake of N derived from other sources (NDFO). NDFO at low N concentrations was a significant portion of the total N in the plant. As a result, the difference in estimation of percent N recovery between each method was larger at lower N concentrations for all species. The nonisotopic total N method produces higher fertilizer N uptake estimates, as much as three to four times the isotopic based estimates, in container-grown plants at N concentrations of 25 mg·L-1. Actual fertilizer N loss increases dramatically from 25 to 300 mg·L-1 (due to dramatic increases in N applied), despite small gains in fertilizer N recovery efficiency.


2014 ◽  
Vol 11 (6) ◽  
pp. 1649-1666 ◽  
Author(s):  
X. P. Liu ◽  
W. J. Zhang ◽  
C. S. Hu ◽  
X. G. Tang

Abstract. The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree species acted as sinks for atmospheric N2O. Tree species had a significant effect on CO2 and N2O releases but not on CH4 uptake. The lower net global warming potential in natural regenerated vegetation suggested that natural regenerated vegetation were more desirable plant species in reducing global warming.


2013 ◽  
Vol 10 (7) ◽  
pp. 11037-11076 ◽  
Author(s):  
X. P. Liu ◽  
W. J. Zhang ◽  
C. S. Hu ◽  
X. G. Tang

Abstract. The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variance in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 through April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil CO2 and N2O fluxes were significantly correlated with soil organic carbon, total N, and soil bulk density, while soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter resulted in significant decreases in CO2 emissions and CH4 uptakes, but had no significant influence on N2O fluxes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, Soils in all sites acted as sinks for atmospheric N2O. Tree species had a significant effect on CO2 and N2O fluxes but not on CH4 uptake. The lower net global warming potential in natural regenerated vegetation suggested that natural regenerated vegetation were more desirable plant species in reducing global warming.


Sign in / Sign up

Export Citation Format

Share Document