scholarly journals REVEALING THE ABRASION RESISTANCE OF META-STABLE TITANIUM ALLOYS USING MULTI-PASS DUAL-INDENTER TESTS

2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Hui Xiao ◽  
Can Huang ◽  
Jian Chen ◽  
Cong Li

The abrasion resistance of the Ti-5Al-4Zr-4Mo-2Cr-2Sn-1Fe alloy was investigated using multi-pass dual-indenter (MPDI) scratch tests with different loading conditions under a repetitive local sliding contact. Various microstructures were obtained with different heat treatments. The effect of the phase morphology on the scratch resistance and corresponding failure mechanisms were revealed. Results show that the phase morphology has a great influence on the scratch resistance and that the effect is contact-load dependent. The scratch behaviour is linked to the initial surface hardness at low loading conditions, while the work-hardening ability is more relevant at high loading conditions.

2019 ◽  
Vol 813 ◽  
pp. 92-97
Author(s):  
Paloma Sirvent ◽  
Miguel Ángel Garrido-Maneiro ◽  
Pedro Poza

Ti6Al4V coatings were cold sprayed onto the same bulk alloy at standard conditions, using 800 °C as gas temperature, and a set of new conditions, using 1100°C as gas temperature, which improved coatings performance. Some of these coatings, processed with innovative parameters, were heat treated to promote adhesion and reduce porosity. Scratch tests were performed using a nanoindenter Agilent G200 and the effect of both normal load and scratch velocity were explored. The different mechanisms responsible of wear were evaluated, identifying ploughing and cutting as the main abrasion mechanisms. The wear rate measured in the standard coating was the highest, indicating that this material could not be used to repair the bulk component. However, the abrasion resistance measured in the coatings sprayed at 1100°C was similar to that found in the bulk substrate. Therefore, cold spray could be used for repairing using the new conditions evaluated in this work.


2011 ◽  
Vol 380 ◽  
pp. 24-28
Author(s):  
De Ping Zhao ◽  
Jiang Hao Liu ◽  
Bei Qing Huang ◽  
Xian Fu Wei

To improve scratch-resistance and abrasion-resistance of water-based varnish, change the type of water-based resin, the type and content of wax emulsion and flow agent, then test scratch-resistance and abrasion-resistance of water-based varnish. The results show that resin and wax emulsion has a great influence on the scratch-resistance and abrasion-resistance of water-based varnish. Adding appropriate amount of wax emulsion can improve scratch-resistance and abrasion-resistance to some extent. Adding flow agent has certain influence on scratch-resistance of water-based varnish.


Author(s):  
Xiaojun Xu ◽  
Wei Xu ◽  
Sybrand Van der Zwaag

Scratch tests were carried out in order to investigate correlations of the scratch resistance, representing the abrasion resistance to a certain extent, with various microstructural features as well as different resulting hardness of a high strength low alloy (HSLA) steel. The HSLA steel was subjected to selected heat treatment cycles in order to produce different microstructural combinations, thereby obtaining various abrasion resistance. Results of scratch tests suggested that a high hardness alone cannot guarantee a high scratch (abrasion) resistance, and the microstructural features play a vital role in determining the abrasion resistance. More specifically, it was shown that a dual phase (ferrite plus martensite) microstructure with a relatively low hardness possesses a better abrasion resistance than a full martensite with a higher hardness. Moreover, observations of scratch scars revealed different features of scar surface and debris: the dual phase microstructure results in a smooth scar surface and with plate debris, while a full martensite leads to a relatively coarse scar surface with sharp debris, which is very harmful to the abrasion resistance due to its secondary damage to the surface. Furthermore, results suggested the scratch test can well mimic the nature of abrasion wear and hence provide fast, reproducible, and quantitative information on abrasion resistance of different microstructures


2004 ◽  
Vol 126 (2) ◽  
pp. 372-379 ◽  
Author(s):  
J. L. Bucaille ◽  
E. Felder ◽  
G. Hochstetter

An experimental and numerical study of the scratch test on polymers near their surface is presented. The elastoplastic response of three polymers is compared during scratch tests at large deformations: polycarbonate, a thermosetting polymer and a sol-gel hard coating composed of a hybrid matrix (thermosetting polymer-mineral) reinforced with oxide nanoparticles. The experiments were performed using a nanoindenter with a conical diamond tip having an included angle of 30 deg and a spherical radius of 600 nm. The observations obtained revealed that thermosetting polymers have a larger elastic recovery and a higher hardness than polycarbonate. The origin of this difference in scratch resistance was investigated with numerical modelling of the scratch test in three dimensions. Starting from results obtained by Bucaille (J. Mat. Sci., 37, pp. 3999–4011, 2002) using an inverse analysis of the indentation test, the mechanical behavior of polymers is modeled with Young’s modulus for the elastic part and with the G’sell-Jonas’ law with an exponential strain hardening for the viscoplastic part. The strain hardening coefficient is the main characteristic parameter differentiating the three studied polymers. Its value is equal to 0.5, 4.5, and 35, for polycarbonate, the thermosetting polymer and the reinforced thermosetting polymer, respectively. Firstly, simulations reveals that plastic strains are higher in scratch tests than in indentation tests, and that the magnitude of the plastic strains decreases as the strain hardening increases. For scratching on polycarbonate and for a penetration depth of 0.5 μm of the indenter mentioned above, the representative strain is equal to 124%. Secondly, in agreement with experimental results, numerical modeling shows that an increase in the strain hardening coefficient reduces the penetration depth of the indenter into the material and decreases the depth of the residual groove, which means an improvement in the scratch resistance.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2860
Author(s):  
Eglė Kumpikaitė ◽  
Sandra Varnaitė-Žuravliova ◽  
Indrė Tautkutė-Stankuvienė ◽  
Ginta Laureckienė

The behaviour of textile products made from different fibres during finishing has been investigated by many scientists, but these investigations have usually been performed with cotton or synthetic yarns and fabrics. However, the properties of raw materials such as linen and hemp (other cellulose fibres) and linen/silk (cellulose/protein fibres) have rarely been investigated. The aim of the study was to investigate and compare the mechanical (breaking force and elongation at break) and end-use (colour fastness to artificial light, area density, and abrasion resistance) properties of cellulose and cellulose/protein woven fabrics. For all fabrics, ΔE was smaller than three, which is generally imperceptible to the human eye. Flax demonstrated the best dyeability, and hemp demonstrated the poorest dyeability, comparing all the tested fabrics. The colour properties of fabrics were greatly influenced by the washing procedure, and even different fabric components of different weaves lost their colours in different ways. Flax fibres were more crystalline than hemp, and those fibres were more amorphous, which decreased the crystallinity index of flax in flax/silk blended fabric. Unwashed flax fabric was more resistant to artificial light than flax/silk or hemp fabrics. Finishing had a great influence on the abrasion resistance of fabrics. The yarn fibre composition and the finishing process for fabrics both influenced the mechanical (breaking force and elongation at break) and end-use (area density and abrasion resistance) properties of grey and finished fabrics woven from yarns made of different fibres.


2021 ◽  
Vol 105 (1) ◽  
pp. 329-337
Author(s):  
David Kusmič ◽  
Lenka Klakurková ◽  
Martin Julis ◽  
Pavel Gejdoš ◽  
Jindrich Vilis ◽  
...  

In this paper, commercially cold-rolled and artificial aged EN AW 7075 T6 alloy has been used. To ensure increased corrosion resistance, surface hardness, scratching resistance, and aesthetic features, this aluminium alloy was subsequently hard anodised and hot-water sealed (AC-A). The hard anodizing and sealing process increased surface hardness up to 304±13 HV 1 from an initial surface hardness of 194±3 HV 1. Also, the microhardness of the anodised layer and bulk material has been documented. Scanning electron microscopy (SEM) was used for microstructure and trapped precipitates investigation in the 42.9±1.4 thick formed anodised layer investigation. The T6 treated (AC) and hard anodised together with sealed (AC-A) EN AW 7075 alloy corrosion properties were evaluated using the anodic potentiodynamic polarisation tests (PPT) in a neutral 2.5% NaCl deaerated solution. The corrosion rate CR (mm/y) decreased approx. 39-times for the hard anodised and sealed EN AW 7075 alloy (AC-A), associated with the shift of the Ecorr (mV) to more positive values, degreased Icorr (µA) and increased Rp (Ohm) values compared to the artificial aged (AC) alloy. Additionally, the pitting was evaluated using laser confocal microscopy, and the pitting coefficient was also calculated.


2010 ◽  
pp. 7-23
Author(s):  
Milan Jaic ◽  
Jovan Dobic ◽  
Tanja Palija

This paper presents the research of influence of sanding, staining and the use of polyurethane and acrylic coating on the adhesion, scratch resistance and abrasion resistance of the coating. Objective was to determine the most important mechanical properties of lacquered surfaces, considering the application of Paulownia elongata and Paulownia fortunei, by using different systems of surface finishing. Cross cut method was used for measurement of adhesion. More accurate view of coating adhesion was obtained by measuring the scratch resistance. Abrasion resistance was tested by the method of free falling of abrasive particles. The applied system of sanding had no effect on the examined mechanical properties. Stained samples lacquered with PU coating showed better adhesion to the non-stained samples. Impact of staining on scratch resistance is not established. Stained samples showed greater resistance to abrasion for both wood species. Samples lacquered with PU coating showed the higher values of mechanical properties compared with samples lacquered with UV acrylic coating. Application of PU coating for surface finishing of Paulownia elongata and Paulownia fortunei is more adequate than the application of UV acrylic coatings, from the point of scratch resistance and abrasion resistance.


2012 ◽  
pp. 87-100
Author(s):  
Milan Jaic ◽  
Tanja Palija

This paper investigates the impact of the top coating on the basic mechanical properties of a lacquered surface, including indentation hardness, scratch resistance and abrasion resistance. Three types of the top coating were used, including a 2K polyurethane coating, a 2K acrylate-isocyanate coating and a 2K alkyd-urethane coating. Samples of two wood species, spruce (Picea abies Karst.) and oak (Quercus robur L.), were used in this study, in order to determine whether the wood species, which is not in direct contact with the top coating, has an impact on the mechanical properties of a lacquered surface. The samples coated with a 2K acrylate-isocyanate coating showed the highest values of indentation hardness, in the samples of both wood species (1.34 N for spruce; 1.4 N for oak). The samples coated with a 2K alkyd-urethane coating showed the highest values of scratch resistance (20 N for both wood species) and abrasion resistance (mass loss of 480 mg after 700 cycles for both wood species). The results have shown that the wood species does not affect the value of indentation hardness, scratch resistance and abrasion resistance of a lacquered surface.


Author(s):  
Baoqing Zhang ◽  
Qinghua Wang ◽  
Ninggang Shen ◽  
Hongtao Ding

The mechanical ruling process using a diamond tool is an important method for fabrication of low-density diffraction gratings. In mechanical ruling, a deposited film of aluminum or gold is mechanically burnished by the diamond tool to form equally spaced and high-quality grooves. The goal of this work is to evaluate the effects of Al film properties and ruling tool loading conditions on the resultant groove formation. The microstructure of the Al film is first studied using scanning electron microscope (SEM) and X-ray diffraction (XRD). The mechanical properties of the Al film are measured by nano-indentation and scratch tests. Mechanical ruling experiments are then carried out on a 10.5 μm thick Al film under various ruling loads ranging from 20 to 105 g. The groove geometry is investigated, and the tool wear of the diamond tool is inspected after the mechanical ruling tests. Finally, a three-dimensional (3D) thermomechanical-coupled finite-element (FE) model is developed to predict the deformation and temperature fields for the micron-scale groove formation by incorporating the Al film properties and a strain-gradient plasticity for modeling the size effect. Multiruling pass simulations are performed to analyze the groove formation under different loading conditions. Through comparison of simulation results with experimental measurement, this model is demonstrated as a useful numerical tool for modeling the mechanical ruling process using a diamond tool.


Sign in / Sign up

Export Citation Format

Share Document