scholarly journals To the Question of Designing Baromembrane Combined Type Apparatus

Author(s):  
S. I. Lazarev ◽  
O. V. Lomakina ◽  
V. E. Bulanov ◽  
I. V. Khorokhorina

The paper considers works on methods for calculating design and technological parameters, design of membrane equipment, research of technological features of membrane devices, selection of design schemes, methods for calculating strength and stiffness. A method has been developed for calculating mechanical loads and determining the thickness of plates and toroidal shells of a membrane apparatus of the combined type, which makes it possible to assess the strength properties of apparatus of this class. An example of a calculation, which makes it possible to assess the adequacy of the application of this technique to devices of the combined type, is given.

2017 ◽  
Vol 737 ◽  
pp. 101-106 ◽  
Author(s):  
Jaromír Moravec ◽  
Iva Nováková

The aim of this article is to present possibilities of diffusion bonding utilization at creation heterogeneous joints where strength properties are taken into account. The joint was implemented to low-alloy structural ferrite-pearlite S355J2 steel and high-alloy austenitic AISI 316L steel. The fundamental theory of diffusion and also design and realisation of experimental creation of diffusion joint in thermal-mechanical simulator Gleeble 3500 is described in the article. Furthermore, procedure of technological parameters selection, when optimisation of strength properties of heterogeneous joint including metallographic evaluation are taken into account, are presented.


2020 ◽  
Vol 4 (157) ◽  
pp. 7-11
Author(s):  
V. Zhvan ◽  
V. Donenko ◽  
S. Kulish ◽  
A. Taran

The article is devoted to the effective analysis of trench and trenchless pipeline laying technologies. In the course of the work, an analytical review of pipeline assembly was performed, the main technological parameters, the scope of each method, and their advantages and disadvantages were determined. List of considered pipeline laying methods: trenching, horizontal directional drilling, mechanical puncture, hydraulic puncture, microtunneling and punching. The article analyzes the classical trench method and the most widely used trenchless ones: horizontal directional drilling; mechanical puncture; hydraulic puncture; microtunneling; punching. Each of these methods has several advantages and disadvantages. The choice of the optimal method of laying the pipeline depends on many factors: the physical and mechanical properties of soils and hydrogeological conditions, the length and diameter of the pipeline, the presence of other communications, buildings and structures, as well as the budget that customers have. Work time is the last deciding factor. Based on the results of the analysis of pipeline laying technologies and expert survey of construction industry experts, the cost table of each method was compiled, outlining the main characteristics of the technology: length of pipeline, speed of work, scope, cost, and the advantages and disadvantages of each of the considered methods. The conclusions about the use of each of the pipeline laying methods were made. Each of the methods has its advantages and disadvantages, so to choose the method of work it is necessary to conduct a comprehensive assessment of technological parameters, cost, scope and timing of work. The cost of lay-ing the pipeline consists of the following factors: conducting research; selection of diameter and determination of pipeline length; choice of laying method and equipment necessary for the works; selection of equipment, shut-off and control equipment and other materials arranged on the pipeline; terms of performance of works. Taking into account these factors, an estimate is made, which determines the cost of installation of a particular pipeline. After the analysis, we can conclude that among the methods of trenchless laying of pipelines can be identi-fied horizontally directional drilling, it is this method of laying the pipeline will be appropriate to use for our region. The drilling technique allows to carry out pipelines under obstacles, to pull long segments of networks, to repair site damage. This method is universal and can be used in almost any environment. Keywords: trenches, horizontal directional drilling, mechanical puncture, hydraulic piercing, microtunnelling, punching, pipeline.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


Author(s):  
S. Yu. Bulatov ◽  
V. N. Nechaev ◽  
A. G. Sergeev

Feed production, feeding of animals and poultry is an integral part of animal husbandry and poultry farming. Proper feeding of animals and poultry, which implies the making of an optimal diet with the input of useful premixes and vitamins, can increase their productivity. In Russia the predominant type of feeding is complete feed, which includes compound feed. Regardless of the type of feed in the process of its production, it is necessary to observe the proportions of its components. Dispensers are used for dosing, which depending on the purpose, are divided into mass and volume. We have made an attempt to generalize, systematize and implement the accumulated experience in the form of a scheme that allows us to understand the principle of operation of modern systems for dosing feed components, in which augers are used as feeding mechanisms. The purpose of the research was to build a scheme for selecting parameters and develop a methodology for studying the dosage system of feed components based on it. The results of the analysis of intellectual property protection documents and scientifi c works in the fi eld of dosing have been used to make a scheme for selecting parameters of the feed components dosing system. The results of observations on the operation of the developed system under production conditions and design features have been also taken into account. As a result of the research developed the scheme of selection of the operating parameters of the dosing system, revealed its shortcomings in the form of lower dosing accuracy with the decrease in the mass of the weighed components and the long search settings when composing the new diet. The methods have been developed to address the identifi ed defi ciencies in the determination of limit values of technological parameters.


Fermentation ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 43
Author(s):  
Nadine Feghali ◽  
Angela Bianco ◽  
Giacomo Zara ◽  
Edouard Tabet ◽  
Chantal Ghanem ◽  
...  

In order to select Saccharomyces cerevisiae starter strains for ‘‘Merwah’’ wine production, three strains (M.6.16, M.10.16, and M.4.17) previously isolated from ‘‘Merwah’’ must and characterized at the lab scale were tested in pilot-scale fermentation in a Lebanese winery during the 2019 vintage. The three inoculated musts were compared to that obtained with a spontaneous fermentation. During the fermentations, must samples were taken to evaluate the dominance of the inoculated strains, and at the end of fermentation, the obtained wines were subjected to chemical and sensorial characterization. Molecular monitoring by interdelta analysis revealed that only M.4.17 was able to complete the fermentation and dominate over the wild yeasts. Based on the analysis of principal technological parameters (i.e., residual sugar, fermentative vigor, sulfur production, and acetic acid) and sensorial analysis of the wines obtained, M.4.17 was selected as an adequate starter for the production of typical ‘‘Merwah’’ wine.


1977 ◽  
Vol 34 (1) ◽  
pp. 12-15
Author(s):  
I. A. Boguslavskii ◽  
A. M. Butaev ◽  
A. N. Yaborov

Author(s):  
J C Rico ◽  
S Mateos ◽  
E Cuesta ◽  
C M Suárez

This paper presents a program for the automatic design of special tools developed under a CAD/CAM (computer aided design/manufacture) system. In particular, the special tools made with standard components have been considered. Since the design of these types of tools was essentially related to the selection of their components, this paper deals with this aspect, insisting upon the selection of those components directly related to the removal of material: the toolholders or cartridges and the inserts. To select these components it is necessary to take into account not only geometrical or technological rules but also economical ones, owing to the high amount of possible components they can select. Consideration of economical aspects required the formulation of the cost equation associated with the use of these types of tools, characterized because their cutting edges coincide with different cutting velocities. Likewise, consideration of economical aspects allows the selection of the optimum cutting conditions and the cutting components to take place at the same time. Some of the geometrical and technological parameters related to the selection of cutting components are automatically identified by the system through an automatic identification of the workpiece profile.


It is now well established that the strength and stiffness of materials such as epoxy resins and aluminium can be increased by the incorporation of suitable fibres. However, relatively little effort has been made to improve similarly the high temperature strength of materials intended for service above ca . 800°C. This paper is introduced with a general examination of fibre/matrix systems that offer improved high temperature capability over current materials, with reference to gas turbine blade applications. The importance of properties and characteristics that influence the selection of suitable fibre and matrix combinations, for example, density, strength, oxidation resistance and compatibility, are discussed. Experi­mental work on the strength of potentially useful fibres such as refractory metal and alumina filaments, their incorporation into nickel-base alloy matrices using vacuum-casting techniques, and the evaluation of composites are described. In terms of the measured properties and of strength predictions based on fibre and matrix data, the merits and limitations of composites relative to well-developed alloys strengthened by precipitation mechanisms are considered.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Sajjad Hussain ◽  
Zahid Ur Rehman ◽  
Noor Mohammad ◽  
Muhammad Tahir ◽  
Khan Shahzada ◽  
...  

The empirical and numerical design approaches are considered very important in the viable and efficient design of support systems, stability analysis for tunnel, and underground excavations. In the present research work, the rock mass rating (RMR) and tunneling quality index (Q-system) were used as empirical methods for characterization of rock mass based on real-time geological and site geotechnical data and physical and strength properties of rock samples collected from the alignment of tunnel. The rock mass along the tunnel axis was classified into three geotechnical units (GU-1, GU-2, and GU-3). The support systems for each geotechnical unit were designed. The 2D elastoplastic finite-element method (FEM) was used for the analysis of rock mass behavior, in situ and redistribution stresses, plastic thickness around the tunnel, and performance of the design supports for the selection of optimum support system among RMR and Q supports for each geotechnical unit of tunnel. Based on results, Q support systems were found more effective for GU-1 and GU-2 as compared to RMR support systems and RMR support systems for GU-3 as compared to Q support systems.


2002 ◽  
Vol 124 (4) ◽  
pp. 792-798 ◽  
Author(s):  
A. Antoniadis ◽  
N. Vidakis ◽  
N. Bilalis

Gear Hobbing is a complex gear manufacturing method, possessing great industrial significance. The convoluted geometry of the cutting tools brings on modeling problems and is the main reason for the almost exclusive application of HSS as cutting material. However, despite its complicated kinematics, gear hobbing is sufficiently described by well-established software tools, which were presented in the first part of the present paper. Experimental investigations exhibited the cutting performance of cemented carbide cutting teeth, which were expected to be potential alternatives for massive hob production. In these cutting experiments, hardmetal tools exhibited in several cases early and unexpected brittle failures, which were interpreted by the FRSFEM model in the first part of the paper. This analysis indicated that the occurring dynamic stresses are the reason for the observed fatigue failures on the cemented carbide tools. The occurring stresses are highly dependent on the selection of cutting parameters and on the tool geometry. Therefore, the proper selection of the cutting data may prevent the early tool failures, as the dominant parameters for tool wear, allowing it to be worn out by the conventional abrasive mechanisms. Thus, the doubtless dominance of cemented carbide over the HSS tools, may be rendered. The present work illustrates a parametric analysis, which describes quantitatively the effect of various cutting and technological parameters on the stress level occurring in gear hobbing, with cemented carbide cutting teeth. Hereby, the optimization of the tool life is enabled, allowing the maximum exploitation of modern gear hobbing machine tools. Optimized gear hobbing with cemented carbide tools may be used, in order to introduce higher cutting speeds in massive gear production.


Sign in / Sign up

Export Citation Format

Share Document