scholarly journals Planning for a Prosumer Future: The Case of Central Park, Sydney

2019 ◽  
Vol 4 (1) ◽  
pp. 172-186 ◽  
Author(s):  
Lisa McLean ◽  
Rob Roggema

Rapid convergence of utility and mobility solutions enabled by data and the Internet of Things is future-proofing economies around the world, delivering liveability, sustainability and resilience, and importantly decreases pressure on utility bills and infrastructure costs. Australians cannot miss out on the many benefits brought to families and businesses by the digitisation of infrastructure and services are bringing—not just reduced household bills but also the ability to generate income as prosumers, not consumers. Localised sustainable Next-Gen infrastructure and services are growing from within communities, creating a new class of consumer—the prosumer: where customers are more than consumers but also producers. Prosumers have the ability to generate free energy from the sun at home or office and sell the excess, recycle water and waste reaping the financial benefit, avoid the second largest household expense of a car by sharing mobility, and access shared data networks to plug in and play at little cost. Planning frameworks play a critical role in enabling a new utility prosumer future in Australia and reform of planning gateway processes is essential. This article highlights Sydney’s Central Park as a best practice urban infill development showcasing how the flows of water and energy are organised to provide enhanced sustainability, liveability and resilience for the local and neighbouring communities. Central Park proves the benefits of taking a precinct approach to utility and mobility services. It shows how these benefits can grow and be exported to neighbouring buildings and existing communities, in this case University of Technology driving inclusion and affordability. Central Park also demonstrates the opportunities to drive deeper socio/environmental benefits by enabling prosumer services through low-cost access to utility services and circular resource flows. Importantly, this article demonstrates that Central Park’s phenomenal sustainability benefits can be replicated at scale in land release communities, but planning reform is required.

Geoheritage ◽  
2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Roger Crofts ◽  
Dan Tormey ◽  
John E. Gordon

AbstractThis paper introduces newly published guidelines on geoheritage conservation in protected and conserved areas within the “IUCN WCPA Best Practice Guidelines” series. It explains the need for the guidelines and outlines the ethical basis of geoheritage values and geoconservation principles as the fundamental framework within which to advance geoheritage conservation. Best practice in establishing and managing protected and conserved areas for geoconservation is described with examples from around the world. Particular emphasis is given to the methodology and practice for dealing with the many threats to geoheritage, highlighting in particular how to improve practice for areas with caves and karst, glacial and periglacial, and volcanic features and processes, and for palaeontology and mineral sites. Guidance to improve education and communication to the public through modern and conventional means is also highlighted as a key stage in delivering effective geoconservation. A request is made to geoconservation experts to continue to share best practice examples of developing methodologies and best practice in management to guide non-experts in their work. Finally, a number of suggestions are made on how geoconservation can be further promoted.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


2021 ◽  
pp. 239496432110105
Author(s):  
Bruno Pereira ◽  
Gui Lohmann ◽  
Luke Houghton

Collaboration plays a critical role in fostering innovation and value creation in the aviation sector. However, how factors and connections relate to the achievement of innovative outcomes in aviation require further investigation. This study investigates the key factors that create a conceptual framework by conducting a literature review and an archival analysis of news articles. The model proposed involves factors such as strategic decision-making; networking and partner choice; cultural context, values, behaviour and compatibilities; collaboration configuration; issues and risks shared; skills, capacities and experience; infrastructure and resources available; engagement activities; knowledge transfer, absorption and appropriation; collaboration management; communication flows; external environment and demand; and expectations and outcomes. Promising collaborations are also indicated in areas where the framework could be adopted to increase partnerships and outcomes. Also, we highlight best practice examples from leading organizations, such as International Airlines Group (IAG), Emirates Airline, Singapore Airlines, Boeing and JetBlue, to provide insights into existing collaborations that have led to innovation and value creation in this sector.


2020 ◽  
Vol 34 (04) ◽  
pp. 265-271
Author(s):  
Marc W. Herr ◽  
Aurora G. Vincent ◽  
Meghan A. Skotnicki ◽  
Yadranko Ducic ◽  
Spiros Manolidis

AbstractRadiation therapy plays a critical role in the treatment of malignancies involving the head and neck. Although the therapeutic effects of ionizing radiation are achieved, normal tissues are also susceptible to injury and significant long-term sequelae. Osteoradionecrosis of the temporal bone (ORNTB) is among the many complications that can arise after therapy. ORNTB is a debilitating and potentially lethal condition that continues to challenge patients and treating physicians. Herein, we review the pathophysiology, presentation, work-up, and management of ORNTB.


Author(s):  
Armando Rocha Trinidade ◽  
Hermano Carmo ◽  
José Bidarra

Through the many documents regularly emitted by those dedicated to this activity, it is comparatively easy to describe factual developments in the field of open and distance education in different places in the world. However, it is much more difficult to produce judgements of value about their quality. Quality is a subjective rather than an absolute concept and may be examined from different analytical perspectives: consumers' satisfaction level, intrinsic value of scientific and technical content of learning materials, soundness of learning strategies, efficiency of organisation and procedures, adequate use of advanced technologies, reliability of student support mechanisms, etc. These parameters should be put into the context of specific objectives, nature of target populations and availability of different kinds of resources. In a specific geographic, social, economic and cultural situation a given set of solutions might be judged as adequate and deserving the qualification of "good practice", while in a different context it could be considered of rather poor quality. The selection of examples in this article is the sole responsibility of the authors: neither should the chosen cases be considered as clearly better than any other one, nor missing cases be interpreted as lack of appreciation or a negative judgement. Finally, the authors are aware of the risks of interpreting trends and trying to extrapolate them into the near future: readers should use their own judgement in accepting (or forcefully rejecting) these projections.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 686 ◽  
Author(s):  
Sanjeev Manocha ◽  
François Ponchon

The EU28 total lime demand in 2017 was estimated at about 20 million tons, out of which about 40% are consumed in the iron and steel industry. Steel remains the major consumer after environment and construction. The lime industry is quite mature and consolidated in developed countries, with enough reserves and production to serve regional markets while being fragmented in developing nations where steel producers rely on local sourcing. There is relatively very little trade for lime worldwide. Lime has a critical role at different steps of the steelmaking process, and especially to make a good slag facilitating the removal of sulphur and phosphorus, and for providing a safer platform to withstand high intensity arc plasma in the electric arc furnace (EAF), and violent reactions in the basic oxygen furnace (BOF). Lime quality and quantity has a direct effect on slag quality, which affects metallurgical results, refractory life, liquid metal yield, and productivity, and therefore the total cost of the steel production. In this paper, we present the importance of careful selection in the limestone and calcination process, which influences critical lime quality characteristics. We shall further elaborate on the impact of lime characteristics in the optimization of the steelmaking process, metallurgical benefits, overall cost impact, potential savings, and environmental benefits.


Author(s):  
Fábio C. Barbosa

Freight rail carriers have been continuously challenged to reduce costs and comply with increasingly stringent environmental standards, into a continuously competing and environmentally driven industry. In this context, current availability and relative abundance of clean and low cost non conventional gas reserves have aroused a comprehensive reevaluation of rail industry into fuel option, especially where freight rail are strongly diesel based. Countries in which rail sector is required to play an important role in transport matrix, where fuel expenditures currently accounts for a significant share of operational costs, like Australia, Brazil, United States and other continental countries, can be seen as strong candidates to adopt fuel alternatives to diesel fueled freight railways. Moreover, from an environmental perspective, the use of alternative fuels (like natural gas) for locomotive traction may allow rail freight carriers to comply with emission standards into a less technologically complex and costly way. In this context, liquefied natural gas (LNG) fueled freight locomotives are seen as a strong potential near-term driver for natural gas use in rail sector, with its intrinsic cost and environmental benefits and with the potential to revolutionize rail industry much like the transition from steam to diesel experienced into the fifties, as well as the more recent advent of use of alternating current diesel-electric locomotives. LNG rail fueled approach has been focused on both retrofitting existing locomotive diesel engines, as well as on original manufactured engines. Given the lower polluting potential of natural gas heavy engines, when compared to diesel counterparts, LNG locomotives can be used to comply with increasingly restrictive Particulate Matter (PM) and Nitrogen Oxides (NOx) emission standards with less technological complexity (engine design and aftertreatment hardware) and their intrinsic lower associated costs. Prior to commercial operation of LNG locomotives, there are some technical, operational and economic hurdles that need to be addressed, i.e. : i) locomotive engine and fuel tender car technological maturity and reliability improvement; ii) regulation improvement, basically focused on operational safety and interchange operations; iii) current and long term diesel - gas price differential, a decisive driver, and, finally, iv) LNG infrastructure requirements (fueling facilities, locomotives and tender car specifications). This work involved an extensive research into already published works to present an overview of LNG use in freight rail industry into a technical, operational and economical perspective, followed by a critical evaluation of its potential into some relevant freight rail markets, such as United States, Brazil and Australia, as well as some European non electrified rail freight lines.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hui Yao ◽  
Yiran Wang ◽  
Junfu Liu ◽  
Mei Xu ◽  
Pengrui Ma ◽  
...  

Lignin is the second-largest plant polymer on Earth after cellulose. About 98% of lignin produced in the papermaking and pulping industry is used for combustion heating or power generation. Less than 2% of lignin is used in more valuable fields, mainly in the formulation of dispersants, adhesives, and surfactants. Asphalt is one of the most important materials in pavement engineering. It is a dark brown complex mixture composed of hydrocarbons with different molecular weights and their non-metallic derivatives. Because the chemical structure of lignin is similar to that of asphalt, it is a carbon-based hydrocarbon material. More researchers studied the application of lignin in pavement engineering. In this paper, the structure, application, and extraction technology of lignin were summarized. This is a review article describing the different applications of lignin in pavement engineering and exploring the prospects of the application. There are three main types of pavement materials that can be used for lignin in pavement engineering, which are asphalt, asphalt mixture, and roadbed soil. In asphalt, lignin can be used as a modifier, extender, emulsifier, antioxidant, and coupling agent. In asphalt mixtures, lignin can be used as an additive. In road base soils, lignin can be used as a soil stabilizer. Furthermore, the article analyzed the application effects of lignin from the life cycle assessment. The conclusions suggest that lignin-modified asphalt exhibits more viscosity and hardness, and its high-temperature resistance and rutting resistance can be significantly improved compared with conventional asphalt. In addition, some lignin-modified asphalt binders exhibit reduced low-temperature crack resistance and fatigue resistance, which can be adjusted and selected according to the climate change in different regions. The performance of lignin as an asphalt mixture additive and asphalt extender has been proved to be feasible. Lignin can also produce good mechanical properties as well as environmental benefits as a soil stabilizer. In summary, lignin plays an important role in asphalt pavement and roadbed soil, and it is likely to be a development trend in the future due to its environmental friendliness and low cost. More research is needed to generalize the application of lignin in pavement engineering.


Sign in / Sign up

Export Citation Format

Share Document