scholarly journals Biologically Active Aldehydes In Extracts Of Lactarius Pergamenus (Fr.) Fr Fresh Fruiting Bodies

2020 ◽  
Vol 15 (3) ◽  
pp. 125-131
Author(s):  
V.O. Antonyuk ◽  
L.V. Panchak ◽  
M.V. Tsivinska ◽  
R.S. Stoika

The biologically active aldehydes in extracts of fungi of the genus Lactarius were identified. It’s established that these substances are unstable, they are found in fresh and frozen fungi, but are absent in dried mushrooms and interact with 1,4-phenylenediamine to form a colored compound. Methylene chloride is the best extragent for these substances. TLC on silufol plates showed that there were several substances in Lactarius pergamenus fruiting bodies and they had varying degrees of stability. For selection of these substances, methylene chloride extract was separated on a column of silica gel. Fraction, which gave the most expressive reaction with 1,4-phenylenediamine on thin-layer chromatograms were analyzed by GC-MS both in the absence and in the presence of 1,4-phenylenediamine. As a result, it was found that 1,4-phenylenediamine or other aromatic amines interacted with highly active aldehydes, that were present in fruiting bodies. Among them 2,2-dimethylocta- 3,4-dienal was the most stable and was present in the biggest quantity. This substance very rarely occurs in the vegetable kingdom and in fungi extracts of Lactarius genus wasn’t previously described. Its possible function in fungi is prevention of damage by parasites and eating by animals.

1982 ◽  
Vol 65 (1) ◽  
pp. 162-165
Author(s):  
Daniel H Daniels ◽  
Charles R Warner ◽  
Sami Selim

Abstract Methods are described for the quantitation and verification of polysorbate 60 (PS 60) in salad dressing. The sample is partitioned between methylene chloride and water. The methylene chloride extract is further treated by silica gel column chromatography. The isolated PS 60 is complexed with ammonium cobaltothiocyanate and determined spectrophotometrically at 620 nm. Additional evidence indicating the presence of PS 60 is obtained from thin layer chromatographic analysis using the modified Dragendorff reagent for visualization of spots.


1960 ◽  
Vol XXXV (II) ◽  
pp. 225-234 ◽  
Author(s):  
R. Bourrillon ◽  
R. Got ◽  
R. Marcy

ABSTRACT A new method for preparation of Human Menopausal Gonadotrophin involves successively alcoholic precipitation, kaolin adsorption and chromatography on ion exchangers. A highly active material is obtained which corresponds to 1 mg per litre of urine and has an activity of 1 mouse uterus unit at a dose of 0.003 mg. This gonadotrophin possesses both follicle stimulating and luteinizing activities in hypophysectomized female rats, by histological study. It contains 13 % hexose, 10% hexosamine and 8.5 % sialic acid. A further purification, by zone electrophoresis on starch, gives a final product, biologically active at 0.001 mg, which behaves as an homogenous substance in free electrophoresis with mobility −4.76 × 10−5 at pH 8.6.


2000 ◽  
Vol 35 (2) ◽  
pp. 245-262 ◽  
Author(s):  
Francis I. Onuska ◽  
Ken A. Terry ◽  
R. James Maguire

Abstract The analysis of aromatic amines, particularly benzidines, at trace levels in environmental media has been difficult because of the lack of suitable deactivated capillary column stationary phases for gas chromatography. This report describes the use of an improved type of column as well as a method for the analysis of anilines and benzidines in water, wastewater and sewage samples. Extraction procedures are applicable to a wide range of compounds that are effectively partitioned from an aqueous matrix into methylene chloride, or onto a solid-phase extraction cartridge. The extracted analytes are also amenable to separation on a capillary gas chromatographic column and transferable to the mass spectrometer. These contaminants are converted to their N-trifluoroacetyl derivatives. Aniline and some substituted anilines, and 3,3’-dichlorobenzidine and benzidine were determined in 24-h composite industrial water, wastewater, primary sludge and final effluent samples at concentrations from 0.03 up to 2760 µg/L.


2019 ◽  
Vol 20 (15) ◽  
pp. 1309-1320 ◽  
Author(s):  
Ahmed M. Younis ◽  
Marwa M. Abdel-Aziz ◽  
Mohamed Yosri

Background:: Mushrooms are deemed as a special delicacy in many countries. They are considered an important cuisine due to their bioactive ingredients and possible health benefits. Methods: Herein, we measured selected biological properties of methanol extracts of Pleurotus citrinopileatus and Boletus edulis fruiting bodies including; in vitro antimicrobial activity, anti-α- glucosidase activity, antioxidant activity, anti-lipase activity and cytotoxic activity against different cancer cells and normal cells. Results: B. edulis methanol extracts showed high antimicrobial and anti-α-glucosidase activity. In contrast, P. citrinopileatus methanol extracts showed superior antioxidant activity indicated by (1,1- diphenyl-2-picrylhydrazyl) DPPH radical scavenging with half maximal inhibitory concentration of IC50 37.4 µg/ml, anti-lipase activities with IC50 65.2 µg/ml and high cytotoxicity activity against HepG2 and HeLa cell lines with IC50 22.8 and 36.7 µg/ml, respectively. Flow cytometric analysis of the cell cycle was used to show apoptotic effects of methanol extracts against HepG2 and HeLa cells. Conclusion: P. citrinopileatus and B. edulis methanolic extracts appear to contain biologically active compounds that might be used to treat some common human diseases.


2020 ◽  
Vol 17 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Zohreh kheilkordi

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers. Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product. Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.


2019 ◽  
Vol 16 (7) ◽  
pp. 953-967 ◽  
Author(s):  
Ghodsi M. Ziarani ◽  
Fatemeh Mohajer ◽  
Razieh Moradi ◽  
Parisa Mofatehnia

Background: As a matter of fact, nitrogen as a hetero atom among other atoms has had an important role in active biological compounds. Since heterocyclic molecules with nitrogen are highly demanded due to biological properties, 4-phenylurazole as a compound containing nitrogen might be important in the multicomponent reaction used in agrochemicals, and pharmaceuticals. Considering the case of fused derivatives “pyrazolourazoles” which are highly applicable because of their application for analgesic, antibacterial, anti-inflammatory and antidiabetic activities as HSP-72 induction inhibitors (I and III) and novel microtubule assembly inhibitors. It should be mentioned that spiro-pyrazole also has biological activities like cytotoxic, antimicrobial, anticonvulsant, antifungal, anticancer, anti-inflammatory, and cardiotonic activities. Objective: Urazole has been used in many heterocyclic compounds which are valuable in organic syntheses. This review disclosed the advances in the use of urazole as the starting material in the synthesis of various biologically active molecules from 2006 to 2019. Conclusion: Compounds of urazole (1,2,4-triazolidine-3,5-dione) are the most important molecules which are highly active from the biological perspective in the pharmaceuticals as well as polymers. In summary, many protocols for preparations of the urazole derivatives from various substrates in multi-component reactions have been reported from different aromatic and aliphatic groups which have had carbonyl groups in their structures. It is noted that several catalysts have been synthesized to afford applicable molecules with urazole scaffolds. In some papers, being environmentally friendly, short time reactions and high yields are highlighted in the protocols. There is a room to synthesize new catalysts and perform new reactions by manipulating urazole to produce biologically active compounds, even producing chiral urazole component as many groups of chiral urazole compounds are important from biological perspective.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Antibodies ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 20
Author(s):  
Iftekhar Mahmood

Antibody-drug conjugates (ADCs) are biopharmaceutical products where a monoclonal antibody is linked to a biologically active drug (a small molecule) forming a conjugate. Since the approval of first ADC (Gemtuzumab ozogamicin (trade name: Mylotarg)) for the treatment of CD33-positive acute myelogenous leukemia, several ADCs have been developed for the treatment of cancer. The goal of an ADC as a cancer agent is to release the cytotoxic drug to kill the tumor cells without harming the normal or healthy cells. With time, it is being realized that ADCS can also be used to manage or cure other diseases such as inflammatory diseases, atherosclerosis, and bacteremia and some research in this direction is ongoing. The focus of this review is on the clinical pharmacology aspects of ADC development. From the selection of an appropriate antibody to the finished product, the entire process of the development of an ADC is a difficult and challenging task. Clinical pharmacology is one of the most important tools of drug development since this tool helps in finding the optimum dose of a product, thus preserving the safety and efficacy of the product in a patient population. Unlike other small or large molecules where only one moiety and/or metabolite(s) is generally measured for the pharmacokinetic profiling, there are several moieties that need to be measured for characterizing the PK profiles of an ADC. Therefore, knowledge and understanding of clinical pharmacology of ADCs is vital for the selection of a safe and efficacious dose in a patient population.


1969 ◽  
Vol 62 (3) ◽  
pp. 521-536 ◽  
Author(s):  
M. L. Aubert ◽  
J.-P. Felber

ABSTRACT In investigations on the production and the specificity of anti-ACTH antibodies used for radioimmunoassay, differences have been observed between the various antibodies obtained. It was shown by means of competitive inhibition with different ACTH fragments that the binding of the ACTH molecule to its antibody can occur at different sites along the ACTH peptide. By varying the concentrations of the fragments and the conditions of the assays, it was possible to study the properties of each antibody. Thus antibodies which bind the N-terminal portion, or which exclusively bind the biologically active part of the ACTH chain (1–20), are the most suitable for radioimmunoassay. It was found, however, that the production of antiserum was generally more frequent when binding occurred to the C-terminal portion of the ACTH peptide. Should the presence of such fragments in plasma be confirmed, then the use of these antisera could lead to erroneous measurement of biologically inactive ACTH fragments. Thus, this study reveals that a selection of the antibody for specificity might be necessary for its application to the radioimmunoassay of plasma ACTH, and that this selection could be performed with the use of ACTH fragments. An approach to the problem of binding sites between antigen and antibody has been described and the possibility of introducing a radioimmunoassay for plasma ACTH fragments discussed.


Sign in / Sign up

Export Citation Format

Share Document