Vibration-Random Required

1985 ◽  
Vol 28 (3) ◽  
pp. 36-40
Author(s):  
John McGrath ◽  
William Kindig

This paper presents the General Electric Aerospace Control Systems Department (ACSD) approach to hardware screening using random vibration as a stimulus. The proposed techniques were developed to achieve a screening program that is cost effective and is supportable in dollar payoff with increased productivity. Cost savings are realized by avoiding the assignment of a costly combined environment facility to each product line and reducing the number of test cycles required in the screening process.

1992 ◽  
Vol 22 (3) ◽  
pp. 98-101 ◽  
Author(s):  
Catherine Dooling ◽  
Alan Wolff

Quality is a major issue in industry. However, the performance of hospitals is predominantly measured by quantity. There is little accurate measurement of, and control over, the quality of patient care provided. Traditional medical quality assurance methods do not meet the basic criteria of an effective control system as defined in management theory. Occurrence screening is a method of medical quality control that overcomes many of these deficiencies. It detects adverse patient occurrences by screening medical records using outcome criteria and selective medical record review. The implementation of an occurrence screening program using a small number of criteria and retrospective review in the Medical Record Department of a 200 bed base hospital is described. Screening has been integrated into daily work practices in an efficient and cost effective manner. Medical record staff have become more aware of the importance of complete documentation and the profile of the department in the hospital has risen. Significant patient care problems have been detected by the screening process.


2004 ◽  
Vol 25 (12) ◽  
pp. 1056-1061 ◽  
Author(s):  
Shelley R. Salpeter ◽  
Edwin E. Salpeter

AbstractObjective:To evaluate cost-effective screening and treatment strategies for healthcare workers (HCWs) at risk for tuberculosis exposure.Design:A Markov model was developed to track three hypothetical cohorts of HCWs at low, moderate, and high risk for tuberculosis exposure. For those found to be tuberculin reactors at entry, the choice was for isoniazid treatment or no treatment. For those without tuberculin reactivity, the choice of screening intervals was 6 months, 1 year, 2 years, or 5 years. Outcomes measured were tuberculosis cases, death, life expectancy, and cost. Assumptions were derived from published data and analyses.Results:Treatment of initial reactors with isoniazid in all three risk groups was associated with a net savings of $14,800 to $15,700 for each tuberculosis case prevented. For those without evidence of infection at entry, the most cost-effective screening interval was 1 year for high-risk groups, 2 years for moderate-risk groups, and 5 years for low-risk groups, with a net savings $0.20 to $26 per HCW per year. Screening at a more frequent interval was still cost-effective.Conclusions:For HCWs found to be tuberculin reactors, treatment of their latent infection is to their benefit and is associated with a net cost-savings. Regular tuberculin screening of HCWs can be cost-effective or result in a net cost-savings. Each institution could use its own skin test surveillance data to create an optimum screening program for its employees. However, for most HCWs, a 1-year screening interval would be a cost-effective and safe choice.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 507-515 ◽  
Author(s):  
David Skuse ◽  
Mark Windebank ◽  
Tafadzwa Motsi ◽  
Guillaume Tellier

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid, facilitating the cost-effective production of fibrils. Furthermore, this processing allows the utilization of robust industrial milling equipment. There are 40000 dry metric tons of mineral/microfbrillated (MFC) cellulose composite production capacity in operation across three continents. These mineral/MFC products have been cleared by the FDA for use as a dry and wet strength agent in coated and uncoated food contact paper and paperboard applications. We have previously reported that use of these mineral/MFC composite materials in fiber-based applications allows generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments and that the materials can be prepared using a range of fibers and minerals. Here, we: (1) report the development of new products that offer improved performance, (2) compare the performance of these new materials with that of a range of other nanocellulosic material types, (3) illustrate the performance of these new materials in reinforcement (paper and board) and viscosification applications, and (4) discuss product form requirements for different applications.


2011 ◽  
Vol 14 (2) ◽  
Author(s):  
Thomas G Koch

Current estimates of obesity costs ignore the impact of future weight loss and gain, and may either over or underestimate economic consequences of weight loss. In light of this, I construct static and dynamic measures of medical costs associated with body mass index (BMI), to be balanced against the cost of one-time interventions. This study finds that ignoring the implications of weight loss and gain over time overstates the medical-cost savings of such interventions by an order of magnitude. When the relationship between spending and age is allowed to vary, weight-loss attempts appear to be cost-effective starting and ending with middle age. Some interventions recently proven to decrease weight may also be cost-effective.


2000 ◽  
Vol 35 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Robert A. Quercia ◽  
Ronald Abrahams ◽  
C. Michael White ◽  
John D'Avella ◽  
Mary Campbell

A pharmacy-managed anemia program included distribution and clinical components, with the goal of making epoetin alpha therapy for hemodialysis patients more cost-effective. The Pharmacy Department prepared epoetin alpha doses for patients in unit-dose syringes, utilizing and documenting vial overfill. Pharmacists dosed epoetin alpha and iron (oral and intravenous) per protocol for new and established patients. Baseline data were obtained in 1994, one year prior to implementation of the program, and were re-evaluated in 1995 and 1998. Cost avoidance from utilization of epoetin alpha vial overfill in 1995 and 1998 was $83,560 and $91,148 respectively. In 1995 and 1998, cost avoidance from pharmacy management of anemia was $191,159 and $203,985 respectively. The total cost avoidance from 1995 through 1998 was estimated at $1,018,638. The number of patients with hematocrits under 31% decreased from 32% in 1994 to 21% and 14% in 1995 and 1998 respectively. We conclude that a pharmacy-managed anemia program for hemodialysis patients results in significant cost savings and better achievement of target hematocrits.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


2021 ◽  
Vol 6 (1) ◽  
pp. e000561
Author(s):  
Ving Fai Chan ◽  
Fatma Omar ◽  
Elodie Yard ◽  
Eden Mashayo ◽  
Damaris Mulewa ◽  
...  

ObjectiveTo review and compare the cost-effectiveness of the integrated model (IM) and vertical model (VM) of school eye health programme in Zanzibar.Methods and analysisThis 6-month implementation research was conducted in four districts in Zanzibar. Nine and ten schools were recruited into the IM and VM, respectively. In the VM, teachers conducted eye health screening and education only while these eye health components were added to the existing school feeding programme (IM). The number of children aged 6–13 years old screened and identified was collected monthly. A review of project account records was conducted with 19 key informants. The actual costs were calculated for each cost categories, and costs per child screened and cost per child identified were compared between the two models.ResultsScreening coverage was 96% and 90% in the IM and VM with 297 children (69.5%) from the IM and 130 children (30.5%) from VM failed eye health screening. The 6-month eye health screening cost for VM and IM was US$6 728 and US$7 355. The cost per child screened for IM and VM was US$1.23 and US$1.31, and the cost per child identified was US$24.76 and US$51.75, respectively.ConclusionBoth models achieved high coverage of eye health screening with the IM being a more cost-effective school eye health delivery screening compared with VM with great opportunities for cost savings.


2020 ◽  
Vol 58 (11) ◽  
pp. 1857-1864
Author(s):  
Elisa M. Castells ◽  
Aramis Sánchez ◽  
Amarilys Frómeta ◽  
Yanin Mokdse ◽  
Nelson Ozunas ◽  
...  

AbstractBackgroundIn Cuba, no screening program for cystic fibrosis (CF) has been implemented yet. The ultramicro enzyme-linked immunosorbent assay (UMELISA)® TIR NEONATAL has been developed for the measurement of immunoreactive trypsin (IRT) in dried blood spots on filter paper. The analytical performance of the kit was evaluated in the national network of laboratories.MethodsNewborn dried blood samples (DBS) were evaluated in 16 laboratories. An IRT/IRT/DNA protocol was followed using a cut-off value of 50 ng/mL. The mean, median and percentiles of the distribution were calculated and a two-sample t-test with unequal variance was used for statistical analysis. Influence of perinatal factors on IRT levels was analyzed.ResultsFrom January to June 2018, 6470 newborns were studied, obtaining a mean IRT value of 12.09 ng/mL (ranging 0–358 ng/mL) and a median of 8.99 ng/mL. Fifty-two samples (0.78%) were above the cut-off level and 16 samples (0.24%) were elevated in the re-screening process. One of them was confirmed positive by molecular biology (phe508del/c.3120 + 1G > A), constituting the first newborn screened and diagnosed early in Cuba. Second DBS samples were collected on average at 14 days and processed in the laboratory at 16 days of birth. Significant differences were observed (p < 0.05) when evaluating the influence of gender, birth weight (BW) and gestational age (GA) on the IRT values. Lower IRT concentrations were found in samples processed after 10 days of collection.ConclusionsThe performance of UMELISA® TIR NEONATAL in the laboratories has been satisfactory; hence CF newborn screening (NBS) was extended throughout the country from January 2019.


Pneumonia ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Bisma Ali Sayed ◽  
Drew L. Posey ◽  
Brian Maskery ◽  
La’Marcus T. Wingate ◽  
Martin S. Cetron

Abstract Background While persons who receive immigrant and refugee visas are screened for active tuberculosis before admission into the United States, nonimmigrant visa applicants (NIVs) are not routinely screened and may enter the United States with infectious tuberculosis. Objectives We evaluated the costs and benefits of expanding pre-departure tuberculosis screening requirements to a subset of NIVs who arrive from a moderate (Mexico) or high (India) incidence tuberculosis country with temporary work visas. Methods We developed a decision tree model to evaluate the program costs and estimate the numbers of active tuberculosis cases that may be diagnosed in the United States in two scenarios: 1) “Screening”: screening and treatment for tuberculosis among NIVs in their home country with recommended U.S. follow-up for NIVs at elevated risk of active tuberculosis; and, 2) “No Screening” in their home country so that cases would be diagnosed passively and treatment occurs after entry into the United States. Costs were assessed from multiple perspectives, including multinational and U.S.-only perspectives. Results Under “Screening” versus “No Screening”, an estimated 179 active tuberculosis cases and 119 hospitalizations would be averted in the United States annually via predeparture treatment. From the U.S.-only perspective, this program would result in annual net cost savings of about $3.75 million. However, rom the multinational perspective, the screening program would cost $151,388 per U.S. case averted for Indian NIVs and $221,088 per U.S. case averted for Mexican NIVs. Conclusion From the U.S.-only perspective, the screening program would result in substantial cost savings in the form of reduced treatment and hospitalization costs. NIVs would incur increased pre-departure screening and treatment costs.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2963
Author(s):  
Melinda Timea Fülöp ◽  
Miklós Gubán ◽  
György Kovács ◽  
Mihály Avornicului

Due to globalization and increased market competition, forwarding companies must focus on the optimization of their international transport activities and on cost reduction. The minimization of the amount and cost of fuel results in increased competition and profitability of the companies as well as the reduction of environmental damage. Nowadays, these aspects are particularly important. This research aims to develop a new optimization method for road freight transport costs in order to reduce the fuel costs and determine optimal fueling stations and to calculate the optimal quantity of fuel to refill. The mathematical method developed in this research has two phases. In the first phase the optimal, most cost-effective fuel station is determined based on the potential fuel stations. The specific fuel prices differ per fuel station, and the stations are located at different distances from the main transport way. The method developed in this study supports drivers’ decision-making regarding whether to refuel at a farther but cheaper fuel station or at a nearer but more expensive fuel station based on the more economical choice. Thereafter, it is necessary to determine the optimal fuel volume, i.e., the exact volume required including a safe amount to cover stochastic incidents (e.g., road closures). This aspect of the optimization method supports drivers’ optimal decision-making regarding optimal fuel stations and how much fuel to obtain in order to reduce the fuel cost. Therefore, the application of this new method instead of the recently applied ad-hoc individual decision-making of the drivers results in significant fuel cost savings. A case study confirmed the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document