Design and experimental study of a mutual inductance displacement sensor for active magnetic bearings

2020 ◽  
Vol 62 (12) ◽  
pp. 702-709
Author(s):  
Xiang Guan ◽  
Jin Shang ◽  
Yincai Zou ◽  
Xing Bian ◽  
Junyi Chen ◽  
...  

A type of mutual inductance displacement sensor based on probe circuit board (PCB) technology is discussed in this paper. Firstly, the basic structure and principle of the sensor are introduced and an objective function of calculation is proposed for the optimisation of sensitivity. Then, the influence of design parameters on sensor performance is explored and some design experience is summarised. At the same time, a typical method of circuit implementation for the sensor is introduced and the static experiments are carried out with this method. Compared with the sensors reported in the literature, it is concluded that the index of the experimental sensor has reached a good level.

Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 863 ◽  
Author(s):  
Weiqing Huang ◽  
Mengxin Sun

A piezoelectric actuator using a lever mechanism is designed, fabricated, and tested with the aim of accomplishing long-travel precision linear driving based on the stick-slip principle. The proposed actuator mainly consists of a stator, an adjustment mechanism, a preload mechanism, a base, and a linear guide. The stator design, comprising a piezoelectric stack and a lever mechanism with a long hinge used to increase the displacement of the driving foot, is described. A simplified model of the stator is created. Its design parameters are determined by an analytical model and confirmed using the finite element method. In a series of experiments, a laser displacement sensor is employed to measure the displacement responses of the actuator under the application of different driving signals. The experiment results demonstrate that the velocity of the actuator rises from 0.05 mm/s to 1.8 mm/s with the frequency increasing from 30 Hz to 150 Hz and the voltage increasing from 30 V to 150 V. It is shown that the minimum step distance of the actuator is 0.875 μm. The proposed actuator features large stroke, a simple structure, fast response, and high resolution.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Steve W. Y. Mung ◽  
Cheuk Yin Cheung ◽  
Ka Ming Wu ◽  
Joseph S. M. Yuen

This article presents a simple wideband rectangular antenna in foldable and non-foldable (printed circuit board (PCB)) structures for Internet of Things (IoT) applications. Both are simple structures with two similar rectangular metal planes which cover multiple frequency bands such as GPS, WCDMA/LTE, and 2.4 GHz industrial, scientific, and medical (ISM) bands. This wideband antenna is suitable to integrate into the short- and long-range wireless applications such as the short-range 2.4 GHz ISM band and standard cellular bands. This lowers the overall size of the product as well as the cost in the applications. In this article, the configuration and operation principle are presented as well as its trade-offs on the design parameters. Simulated and experimental results of foldable and non-foldable (PCB) structures show that the antenna is suited for IoT applications.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000557-000562
Author(s):  
Robert N. Dean ◽  
Frank T. Werner ◽  
Michael J. Bozack

Abstract Printed circuit board (PCB) sensors using low-cost commercial printed circuit board fabrication processes have been demonstrated for environmental sensing applications. One configuration of these sensors uses exposed electrodes to measure saltwater concentration in freshwater/seawater mixtures, through monitoring the resistance between the electrodes when they are immersed in the saltwater/freshwater solution. The lowest cost commercial PCB processes use an immersion Sn HASL surface finish on exposed copper cladding, including the sensing electrodes. This commercial PCB process has been demonstrated to make an effective, low-cost, short-lifetime sensor for saltwater concentration testing. The Sn finish, however, may not be optimal for this application. Sn oxidizes, which can interfere with sensor performance. Additionally, Sn and Sn oxides are potentially reactive with chemical constituents in seawater and seawater/freshwater solutions. An immersion Au (ENIG) surface finish is certainly less reactive with the atmosphere and chemicals likely present in the testing environment. However, an immersion Au finish increases the cost of the sensors by 30% to 40%. To investigate if the possible benefits of the more expensive Au surface finish are worth the extra expense, a study was performed where identical PCB sensors were procured from a commercial vendor with their standard low-cost Sn HASL finish and with their standard ENIG surface finish. Both sets of sensors were then evaluated in concentrations of seawater and freshwater, from 0% to 100% seawater concentration, using freshwater samples from a natural freshwater source near the coast where the seawater was obtained. Testing demonstrated an insignificant difference in sensor performance between the Sn HASL and the ENIG coated sensing electrodes. The results of this investigation indicated that for applications where the sensors will not be used for long periods of time, the added expense of an immersion Au surface finish is not worth the added cost.


Author(s):  
Chih-Tang Peng ◽  
Chang-Chun Lee ◽  
Kuo-Ning Chiang

In this study, a silicon base piezoresistive pressure sensor using flip chip and flex circuit packaging technologies is studied, designed and analyzed. A novel designed pressure sensor using flip chip packaging with spacer is employed to substitute the conventional chip on board or SOP packaging technology. Subsequently, a finite element method (FEM) is adopted for the designing of the sensor performance. Thermal and pressure loading is applied on the sensor to study the system sensitivity as well as the thermal and packaging effect. The performance of novel packaging pressure sensor is compared with that of the conventional one to demonstrate the feasibility of this novel design. The findings depict that this novel packaging design can not only maintain well sensor sensitivity but also reduce the thermal and packaging effect of the pressure sensor.


Author(s):  
Jen-Yuan James Chang

A combined elastica and magnetic modeling is presented in this paper with focus given to understanding effect of flexible printed circuit cable and voice coil motor’s dynamic effect on tape head actuator’s lateral motion in advanced, high capacity tape drives. The flexible printed circuit cable which connects the actuator to printed circuit board is first examined through establishment of analytical model to predict its profile with considerations of boundary conditions and mechanical design parameters. Secondly, equivalent stiffness produced by the flexible printed circuit cable when the linear tape head actuator is positioned along its lateral positions is examined. Finally, effect of tape head actuator’s voice coil motor is studied and modeled as a magnetic suspension, contributing to stability and controllability of the actuator lateral motion dynamics. Validated by calibrated laboratory experiments, the work presented in this paper can add to the literature regarding dynamics and control of LTM in modern LTO drives.


Author(s):  
Ahmed M. Alotaibi ◽  
Sohel Anwar

Abstract 3D force sensors have been proven its effectiveness and appropriateness for robotics applications. It has been used in medical and physical therapy applications such as surgical robot and Instrument Assisted Soft Tissue Manipulation (IASTM) in the recent times. The 3D force sensors have been utilized in robot assisted surgeries and modern physical therapy devices to monitor the 3D forces for improved performances. The 3D force sensor performance and specifications depend on different design parameters, such as structural configuration, sensing elements placements, and load criterion. In this paper, different bioinspired structure configurations have been investigated and analyzed to obtain the optimal 3D force sensor configuration in terms of structural integrity, compactness, safety factor, and strain sensitivity. Finite Element Analysis (FEA) simulation was used for the analysis to minimize the time of the development cycle.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 741 ◽  
Author(s):  
Gorachand Dutta ◽  
Anna Regoutz ◽  
Despina Moschou

Here we report the first PCB-implemented electrochemical glucose biosensor usingcovalently immobilized glucose oxidase (GOx) on the commercially fabricated PCB electrodesurface, taking particular care on the electrode surface characteristics and their effect on sensorperformance. Based on the results, this assay exhibits a highly linear response from 500 μM to 20mM (R = 0.9961) and a lower limit of detection of 500 μM.


Sign in / Sign up

Export Citation Format

Share Document