scholarly journals Hydroxyapatite Production from Cuttlebone as Bone Scaffold Material Preparations

2019 ◽  
Vol 22 (1) ◽  
pp. 1 ◽  
Author(s):  
Krisman Umbu Henggu ◽  
Bustami Ibrahim ◽  
Pipih Suptijah

The increasing production of cuttlefish has been associated with the increasing of by-product waste particularly cuttlebone. Cuttlebone is known to contain an inorganic element in form of calcium carbonate<br />(CaCO3) which can be utilized as a source of calcium oxide (CaO) for hydroxyapatite synthesis. This study was aimed to determine the physicochemical characteristics of the cuttlebone and the optimum calcination temperature for CaO extraction and hydroxyapatite synthesis. This study was divided into three steps. Firstly, analysis of the cuttlebone physicochemical properties; secondly, extraction and characterization of the CaO with different calcination temperature (500°C, 600°C, 700°C for 6 hours); and thirdly, hydroxyapatite synthesis using a combination of hydrothermal method at 200°C 6 hours and different calcination treatments (800°C, 900°C, 1,000°C for 1 hour). The results showed that the cuttlebone contained moisture 3.54±0.11%,<br />lipid 0.32±0.19%, protein 4.78±0.23%, carbohydrate 5.29±0.02%, and ash 89.61±0.26. The main element of the ash was CaCO3 aragonite characterized by the high absorption at wavelengths of 1,795; 1,507;<br />1,083; 871; 713 and 700 cm-1. The calcination treatment of 700°C produced the highest amount of CaO. The hydroxyapatite produced with a combination of hydrothermal and calcination temperature 1,000°C<br />had calcium phosphate ratio (Ca/P) 1.66, crystalline level 90.10%, amorphous level 9.90% and particles morphology of rod-shaped.

2016 ◽  
Vol 19 (3) ◽  
pp. 356
Author(s):  
Anjarsari Anjarsari ◽  
Kiagus Dahlan ◽  
Pipih Suptijah ◽  
Tetty Kemala

Biphasic calcium phosphate (BCP) widely used as implants and scaffolds in different orthopedic and dental application. The aim of this study was to determine synthesis and characteristics of biocomposite BCP/collagen as bone scaffold material. BCP/collagen was classified into three groups: 1) BCP/K5 (5% collagen in scaffold), 2) BCP/K10 (10% collagen in scaffold), and 3) BCP/K15 (15% collagen in scaffold). The samples were characterized by Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscope (SEM) techniques. Overall, concentration of collagen was not significantly different to the spectrum. However, FTIR analysis shows the change intensity in bio-composite BCP/collagen. Collagen intensity Higher concentration when collagen concentration in scaffold higher. Morphology analysis of the scaffold showed significant differences in pore formation. BCP/K15 was showed pores formed in scaffold. Synthesis of composite BCP/collagen does not affect the spectrum of functional groups, but affects the formation of pores in the bone scaffold material.


2017 ◽  
Vol 19 (3) ◽  
pp. 356 ◽  
Author(s):  
Anjarsari Anjarsari ◽  
Kiagus Dahlan ◽  
Pipih Suptijah ◽  
Tetty Kemala

<p>Abstract<br />Biphasic calcium phosphate (BCP) widely used as implants and scaffolds in different orthopedic and dental application. The aim of this study was to determine synthesis and characteristics of biocomposite BCP/collagen as bone scaffold material. BCP/collagen was classified into three groups: 1) BCP/K5 (5% collagen in scaffold), 2) BCP/K10 (10% collagen in scaffold), and 3) BCP/K15 (15% collagen in scaffold). The samples were characterized by Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscope (SEM) techniques. Overall, concentration of collagen was not significantly different to the spectrum. However, FTIR analysis shows the change intensity in bio-composite BCP/collagen. Collagen intensity Higher concentration when collagen concentration in scaffold higher. Morphology analysis of the scaffold showed significant differences in pore formation. BCP/K15 was showed pores formed in scaffold. Synthesis of composite BCP/collagen does not affect the spectrum of functional groups, but affects the formation of pores in the bone scaffold material.</p>


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (11) ◽  
pp. 39-47
Author(s):  
V. K Sharma ◽  
◽  
B. Mazumder ◽  
P. P. Sharma

The consumption of edible products strongly recommends the regular hygiene of oral cavity. Various dental products of allopathic and herbal origin are used as dentifrices. The dentifrices are considered safe and effective in terms of cleansing effect of oral cavity and antimicrobial effect against microbes causing bad smell and diseases such as gingivitis, pyorrhea etc. These characteristics of preparations are basically related to physicochemical properties of ingredients present in their composition and some how on directions of their use. In the present study, the marketed allopathic dentifrices coded as Brand I and II and herbal tooth powders coded as Brand III and IV were selected to analyze the impact of physicochemical properties of incorporated ingredients on their cleansing efficiency. The physicochemical characteristics studied were pH, bulk volume, tapped volume, tapped density, bulk density, true density, porosity, flowability, compressibility, compactability, cohesiveness, dispersability, Carr’s index, Hausner’s ratio, water soluble content, alcohol soluble content, foaming index, particle rearrangement behaviour and particle rearrangement constant. The antimicrobial effect of these powders was studied against Staphylococcus sorbinus, Staphylococcus salivarius and Lactobacillus acidophilus. It was observed that some of the physicochemical properties of all powders were different from each other. Marked antimicrobial effect of tooth powders was observed against pathogens. In all preparations, remarkable foaming index was analyzed that was generally considered responsible for cleansing effect.


2015 ◽  
Vol 775 ◽  
pp. 143-146
Author(s):  
Ming Kwen Tsai ◽  
Yueh Chien Lee ◽  
Chia Chih Huang ◽  
Sheng Yao Hu ◽  
Kwong Kau Tiong ◽  
...  

In this work, the CuInS2 nanoparticles are successfully synthesized by microwave-assisted heating technique and further calcined at 400 °C. The morphological, structural, and optical properties of the synthesized CuInS2 nanoparticles are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering, and transmittance measurement, respectively. The SEM image shows the clear particle shape of the calcined CuInS2 nanoparticles. After calcination treatment, the fundamental (112) peak of the XRD spectrum and a broad Raman peak mixed with chalcopyrite and CuAu structures support the improved crystallinity of the calcined CuInS2 nanoparticles.


2021 ◽  
Vol 23 (1) ◽  
pp. 16
Author(s):  
Vienna Saraswaty ◽  
Rossy Choerun Nissa ◽  
Bonita Firdiana ◽  
Akbar Hanif Dawam Abdullah

THE PHYSICOCHEMICAL CHARACTERISTICS OF RECYCLED-PLASTIC PELLETS OBTAINED FROM DISPOSABLE FACE MASK WASTES. The government policy to wear a face mask during the COVID-19 pandemic has increased disposable face mask wastes. Thus, to reduce such wastes, it is necessary to evaluate the physicochemical characteristics of disposable face masks wastes before the recycling process and the recycled products. In this study, physicochemical characterization of the 3-ply disposable face masks and the recycled plastic pellets after disinfection using 0.5% v/v sodium hypochlorite were evaluated. A set of parameters including the characterization of surface morphology by a scanning electron microscope (SEM), functional groups properties by a fourier transform infra-red spectroscopy (FT-IR), thermal behavior by a differential scanning calorimetry (DSC), tensile strength and elongation at break were evaluated. The surface morphological of each layer 3-ply disposable face mask showed that the layers were composed of non-woven fibers. The FT-IR evaluation revealed that 3-ply disposable face mask was made from a polypropylene. At the same time, the DSC analysis found that the polypropylene was in the form of homopolymer. The SEM analysis showed that the recycled plastic pellets showed a rough and uneven surface. The FT-IR, tensile strength and elongation at break of the recycled plastic pellets showed similarity with a virgin PP type CP442XP and a recycled PP from secondary recycling PP (COPLAST COMPANY). In summary, recycling 3-ply disposable face mask wastes to become plastic pellets is recommended for handling disposable face mask wastes problem.


2020 ◽  
Vol 21 (1) ◽  
pp. 108
Author(s):  
Yayuk Astuti ◽  
Brigita Maria Listyani ◽  
Linda Suyati ◽  
Adi Darmawan

Research on synthesis of bismuth oxide (Bi2O3) using sol-gel method with varying calcination temperatures at 500, 600, and 700 °C has been done. This study aims to determine the effect of calcination temperature on the characteristics of the obtained products which encompasses crystal structure, surface morphology, band-gap energy, and photocatalytic activity for the decolorization of methyl orange dyes through its kinetic study. Bismuth oxide prepared by sol-gel method was undertaken by dissolving Bi(NO3)3·5H2O and citric acid in HNO3. The mixture was stirred then heated at 100 °C. The gel formed was dried in the oven and then calcined at 500, 600, and 700 °C for 5 h. The obtained products were a pale yellow powder, indicating the formation of bismuth oxide. This is confirmed by the existence of Bi–O and Bi–O–Bi functional groups through FTIR analysis. All three products possess the same mixed crystal structures of α-Bi2O3 (monoclinic) and γ-Bi2O3 (body center cubic), but their morphologies and band gap values are different. The higher the calcination temperature, the larger the particle size and the smaller the band gap value. The accumulative differences in characteristics appoint SG700 to have the highest photocatalytic activity compared to SG600 and SG500 as indicated by its percent degradation value and decolorization rate constant.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 231 ◽  
Author(s):  
Renata Xavier Alberico Freitas ◽  
Lara Aguiar Borges ◽  
Handray Fernandes de Souza ◽  
Fernando Colen ◽  
Alex Sander Rodrigues Cangussu ◽  
...  

The generation of large volumes of waste by industrial processes has become an object of study because of the necessity to characterize the composition of residues in order to suggest appropriate treatments and to minimize adverse environmental impacts. We performed analyses of total fixed and volatile solids, moisture, and chemical oxygen demand (COD). We found high organic matter content. We also measured physicochemical characteristics, including corrosivity, reactivity, and toxicity. Sewage sludge showed levels of chloride and sodium above the maximum allowed limits. These data suggest the potential for anaerobic digestion as a treatment option for sewage sludge and for its use as a biofertilizer.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 347 ◽  
Author(s):  
Wenjun Liang ◽  
Xiaoyan Du ◽  
Yuxue Zhu ◽  
Sida Ren ◽  
Jian Li

A series of Pd-TiO2/Pd-Ce/TiO2 catalysts were prepared by an equal volume impregnation method. The effects of different Pd loadings on the catalytic activity of chlorobenzene (CB) were investigated, and the results showed that the activity of the 0.2%-0.3% Pd/TiO2 catalyst was optimal. The effect of Ce doping enhanced the catalytic activity of the 0.2% Pd-0.5% Ce/TiO2 catalyst. The characterization of the catalysts using BET, TEM, H2-TPR, and O2-TPD showed that the oxidation capacity was enhanced, and the catalytic oxidation efficiency was improved due to the addition of Ce. Ion chromatography and Gas Chromatography-Mass Spectrometer results showed that small amounts of dichlorobenzene (DCB) and trichlorobenzene (TCB) were formed during the decomposition of CB. The results also indicated that the calcination temperature greatly influenced the catalyst activity and a calcination temperature of 550 °C was the best. The concentration of CB affected its decomposition, but gas hourly space velocity had little effect. H2-TPR indicated strong metal–support interactions and increased dispersion of PdO in the presence of Ce. HRTEM data showed PdO with a characteristic spacing of 0.26 nm in both 0.2% Pd /TiO2 and 0.2% Pd-0.5% Ce/TiO2 catalysts. The average sizes of PdO nanoparticles in the 0.2% Pd/TiO2 and 0.2% Pd-0.5% Ce/TiO2 samples were 5.8 and 4.7 nm, respectively. The PdO particles were also deposited on the support and they were separated from each other in both catalysts.


Sign in / Sign up

Export Citation Format

Share Document