scholarly journals Herbage and animal production responses to fertilizer nitrogen in perennial ryegrass swards. I. Continuous grazing and cutting

1993 ◽  
Vol 41 (3) ◽  
pp. 179-203
Author(s):  
P.J.A.G. Deenen ◽  
E.A. Lantinga

The effects of fertilizer N application on herbage intake and animal performance under continuous grazing management with dairy cows, and on herbage accumulation under a weekly and an approximately 4-weekly cutting regime were studied in 1986-1988 in resown Lolium perenne cv. Wendy grassland on a silty loam soil in Oostelijk Flevoland, Netherlands. 250-700 kg N/ha was applied annually under grazing and from 0 to 700 kg N/ha was applied under cutting. At an assumed marginal profitability of 7.5 kVEM per kg N applied the optimum N application rate was on average 511 and 308 kg/ha per year for 4-weekly cutting and continuous grazing, respectively (1 kVEM = 6.9 MJ Net Energy for lactation). However, especially under grazing, there was a great variation in response to N between years which could be related to soil N availability, length of the growing season and sward quality. Throughout the experimental period the mean tiller density in the grazed swards was hardly affected by the level of N application. However, there were temporary differences in openness of the sward which increased with the level of N application, leading to a loss of productivity as a result of impeded N uptake. Herbage N was poorly converted into animal products. The average efficiency of use of ingested N at 250 kg N was 23%. Higher rates of fertilizer N decreased N use efficiency (19% at 700 kg N/ha per year) but markedly increased N excreted per ha.

Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 685 ◽  
Author(s):  
PE Bacon ◽  
LG Lewin ◽  
JW McGarity ◽  
EH Hoult ◽  
D Alter

The fate of 15N-labelled fertilizer applied to rice (Oryza sativa L) was studied in microplots established within two field experiments comprising a range of stubble levels, stubble management techniques, N application rates and times. The first experiment investigated uptake of soil and fertilizer N in plots where application of 0 or 100 kg N ha-1 to the previous rice crop had produced 11.5 and 16.1 t ha-1 of stubble respectively. The stubble was then treated in one of four ways-burn (no till); burn then cultivated; incorporated in autumn or incorporated at sawing. Microplots within these large plots received 60 kg ha-1 of 5% 15N enriched urea at sowing, just prior to permanent flood (PF), or just after panicle initiation (PI) of the second crop. The second experiment was undertaken within a field in which half of the plots had stubble from the previous three rice crops burned, while the other plots had all stubble incorporated. In the fourth successive rice crop, the two stubble management systems were factorially combined with three N rates (0, 70 or 140 kg N ha-1) and three application times (PF, PI or a 50 : 50 split between PF and PI). Nitrogen uptake and retention in the soil were studied within 15N-labelled microplots established within each of these large plots. Only 4% of the 15N applied at sowing in the first experiment was recovered in the rice crop, while delaying N application to PF or PI increased this to an average of 20% and 44% respectively over the two experiments. The doubling of N application rate doubled fertilizer N uptake and also increased uptake of soil N at maturity by 12 kgN ha-1. Three years of stubble incorporation increased average uptake of fertilizer and soil N in the second experiment by 5 and 12 kg N ha-1 respectively. In both experiments, the soil was the major source of N, contributing 66-96% of total N uptake. On average, in the fourth crop, 20% of fertilizer N was in the grain, 12% in the straw and 3% in the roots, while 23% was located in the top 300 mm of soil. A further 3% was in the soil below 300 mm. The remaining 39% was lost, presumably by denitrification.


1998 ◽  
Vol 49 (4) ◽  
pp. 695 ◽  
Author(s):  
S. Boonchoo ◽  
S. Fukai ◽  
Suzan E. Hetherington

Two types of experiments were conducted with the malting barley cv. Grimmett to examine how assimilate and nitrogen (N) availability at different growth stages determined yield and grain protein concentration (GPC) in south-east Queensland. In one series of experiments, plants were sown in April, June, and August so that they would experience different growing conditions, and responses to N application rate were examined. Another experiment examined response of growth, yield, and GPC to variation of assimilate production pre and post anthesis, caused by the canopy manipulation treatments of opening, closure, and 50% shading at 3 different growth stages. Without N application all 3 sowings produced similar yields (1·9-2·3 t/ha), but when N was applied, yield was higher and responded more to applied N in the June sowing than in the other sowings.The different responses of grain yield to N application rate among the 3 sowing dates were not due to differences in N uptake but to the efficiency of N use; with favourable temperatures throughout crop growth, the crop sown in June utilised N most eciently to develop a large number of grainsand to produce sufficient as similates to fill these grains. When yield had a positive response to low N application rates, then there was generally no response of GPC, whereas when there was no response of grain yield to further rate of N application then GPC increased. The results of the second experiment show that N uptake depended on plant N demand at early stages of growth when N was still available in the soil, but total N content of tops at maturity was similar among canopy manipulation treatments. Canopy opening at any stage of growth tended to increase tiller number, leaf area index, and above-ground dry matter, but the effect was greater attillering stage which produced the highest yield because of the greatest number of heads. Shading reduced yield at all stages, but particularly at pre-anthesis. Shading and canopy closure during grain filling reduced grain yield, but with similar N uptake these treatments significantly increased GPC .These results indicate that GPC depends on both assimilate and N availability to grain, and GPC can increase sharply when grain yield is reduced with low assimilate availability as a result of adverse growing conditions. Responses of grain yield to applied N depended on environmental conditions, particularly the patterns of air temperature during growth, and the crop utilised N more efficiently to produce higher yield when it was not exposed to extreme temperatures during the latter stages of growth.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


1984 ◽  
Vol 64 (4) ◽  
pp. 563-570 ◽  
Author(s):  
M. R. CARTER ◽  
D. A. RENNIE

Growth chamber and field studies were conducted to assess the relative utilization of placed and broadcast 15N-urea by spring wheat. The field studies were conducted on zero and conventional (shallow) tillage systems, of 4-yr duration, located on Chernozemic soils at two locations in Saskatchewan. Placement below the seeding depth in comparison to broadcast application, generally reduced fertilizer N immobilization and increased fertilizer N uptake, recovery, and efficiency. Under moisture stress, placed applications were effective in enhancing dry matter yield and total N uptake. It is concluded that fertilizer N placement for these two contrasting tillage systems should be identical, thus some soil disturbance under zero tillage may be necessary to achieve optimum crop use of applied fertilizer N. The dominant N transformation processes and possible tillage induced differences, in regard to methods of N application, are discussed. Key words: Placed and broadcast N application, N efficiency, N utilization, 15N-urea, zero tillage, soil moisture


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


1976 ◽  
Vol 86 (2) ◽  
pp. 335-342 ◽  
Author(s):  
R. Marsh ◽  
F. J. Gordon ◽  
J. C. Murdoch ◽  
W. E. G. Stevenson

SummaryThe effect of season of harvest and previous seasonal applications of fertilizer N on the response of perennial ryegrass/white clover swards to pre-cut applications of fertilizer N was studied in three consecutive years on different sites. Herbage D.M. yield responded in a curvilinear manner to increased pre-cut N application rates. There was a tendency in all experiments for the marginal response of herbage D.M. to increased pre-cut N application rates to decrease as previous seasonal fertilizer N application rates increased. Although the effect of season of harvest on the response of herbage D.M. to pre-cut N application rates varied with site/years, it was concluded that the marginal response of herbage D.M. to pre-cut N application rate varies little throughout the greater part of the growing season. The exceptions to this are the very early and late harvests and swards that receive low supplies of N from the sward/soil complex. The results are discussed in relation to other published data and to their possible use in the control of the seasonal pattern and total seasonal supply of herbage D.M. for rotational grazing management systems.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2499
Author(s):  
Tammo Peters ◽  
Friedhelm Taube ◽  
Christof Kluß ◽  
Thorsten Reinsch ◽  
Ralf Loges ◽  
...  

High doses of nitrogen (N) fertiliser input on permanent pastures are crucial in terms of N surplus and N losses. Quantitative analyses of the response of plant functional traits (PFT) driving crop growth rate (CGR) under low N input are lacking in frequently defoliated pastures. This study aimed to understand the significance of PFTs for productivity and N uptake in permanent grasslands by measuring dynamics in tiller density (TD), tiller weight (TW), leaf weight ratio (LWR), leaf area index (LAI), specific leaf area (SLA), as well as leaf N content per unit mass (LNCm) and per unit area (LNCa) in perennial ryegrass (Lolium perenne)-dominated pastures, in a simulated rotational grazing approach over two consecutive growing seasons. Annual N application rates were 0, 140 and 280 kg N ha−1. The phenological development of perennial ryegrass was the main driver of CGR, N uptake and most PFTs. The effect of N application rate on PFTs varied during the season. N application rate showed the greatest effect on TD, LAI and, to a lesser extent, on SLA and LNCm. The results of this study highlight the importance of TD and its role in driving CGR and N uptake in frequently defoliated permanent pastures.


HortScience ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Carolyn F. Scagel ◽  
Guihong Bi ◽  
Leslie H. Fuchigami ◽  
Richard P. Regan

The influence of irrigation frequency (same amount of water per day given at different times) on nutrient uptake of container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown with different rates of nitrogen (N) fertilizer was evaluated. Increased N application rate increased nutrient uptake and plant dry biomass. Irrigation frequency did not significantly influence total plant dry biomass; however, more frequent irrigation decreased net uptake of several nutrients including phosphorus (P), boron (B), and manganese (Mn) uptake in all cultivars; potassium (K), copper (Cu), and zinc (Zn) uptake in AZ and ER; sulfur (S) uptake in ER and PJM; and iron (Fe) uptake in AZ. Additionally, more frequent irrigation of evergreen cultivars increased calcium (Ca) uptake. Covariate analyses were used to compare nutrient uptake among cultivars and irrigation treatments after accounting for the variability in nutrient uptake attributable to differences in biomass and N uptake. For most nutrients, the influence of irrigation frequency on uptake was partially attributable to differences in biomass and N uptake. After accounting for the variability in nutrient uptake associated with biomass or N uptake, increased irrigation frequency decreased P, S, B, Cu, and Mn uptake only in ER and increased Ca uptake in the two evergreen cultivars. Differences in nutrient uptake among cultivars in response to irrigation treatments were related to water and N availability during production and their combined influence on water stress, nutrient uptake, and biomass partitioning. Estimates of nutrient demand and uptake efficiency using nutrient concentrations and ratios are discussed in relation to nutrient management differences for different cultivars and irrigation treatments.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Tao Sun ◽  
Xin Yang ◽  
Xiaoli Tan ◽  
Kefeng Han ◽  
Sheng Tang ◽  
...  

Previous studies have revealed that the japonica/indica hybrid rice has a higher yield potential, biomass production, and nitrogen (N) accumulation than japonica rice in China, however, at a single N application rate. It remains unclear whether it also occurs at a higher or lower N application rate under the same field condition. To investigate the effects of nitrogen application rates on grain yield, N uptake, dry matter accumulation, and agronomic N use efficiency, field experiments were conducted in Jinhua City, Zhejiang Province during three consecutive growth seasons in 2016, 2017, and 2018. Two japonica/indica hybrid varieties (Yongyou 12 and Yongyou 538) and two japonica varieties (Xiushui 134 and Jia 58) were exposed to five N application rates (0, 150, 225, 300, and 375 kg ha−1). The results showed that grain yields of all the varieties increased with increasing nitrogen application rates, except for Jia 58 whose optimum nitrogen level was 225 kg ha−1, because no significant difference was observed between N225 and N300. Across the four rice varieties, N uptake increased significantly with increased N-fertilizer rates at all the growth stages (p < 0.05). Across the three planting years, the average grain yield of japonica/indica hybrid rice was higher than that of japonica rice by 75.6% at N0, 57.2% at N150, 41.1% at N225, 38.3% at N300, and 45.8% at N375. We also found that as compared with japonica rice, the japonica/indica hybrid rice had more grain yield, higher dry matter, and higher N uptake at all growth stages, regardless of the N application rate.


Sign in / Sign up

Export Citation Format

Share Document