scholarly journals A Novel CMOS reconfigurable rectifier for wearable piezoelectric energy harvesters

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Suany Vázquez-Valdés ◽  
Raúl Juárez-Aguirre ◽  
Rosa Woo-García ◽  
Primavera Argüelles-Lucho ◽  
Agustín Herrera-May ◽  
...  

Wearable energy harvesters have potential application in the conversion of human-motion energy into electrical energy to power smart health-monitoring devices, the textile industry, smartwatches, and glasses. These energy harvesters require optimal rectifier circuits that maximize their charging efficiencies. In this study, we present the design of a novel complementary metal-oxide semiconductor (CMOS) reconfigurable rectifier for wearable piezoelectric energy harvesters that can increase their charging efficiencies. The designed rectifier is based on standard 0.18 µm CMOS process technology considering a geometrical pattern with a total silicon area of 54.765 µm x 86.355 µm. The proposed rectifier circuit has two transmission gates (TG) that are composed of four rectifier transistors with a charge of 45 kΩ, a minimum input voltage of 500 mV and a maximum voltage of 3.3 V. Results of numerical simulations of the rectifier performance indicate a voltage conversion efficiency of 99.4% and a power conversion efficiency up to 63.3%. The proposed rectifier can be used to increase the charging efficiency of wearable piezoelectric energy harvesters.

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1143
Author(s):  
Quanzhen Duan ◽  
Weidong Li ◽  
Shengming Huang ◽  
Yuemin Ding ◽  
Zhen Meng ◽  
...  

A linear regulator with an input range of 3.9–10 V, 2.5 V output, and a maximal 500 mA load for use with battery systems was developed and presented here. The linear regulator featured two modules of a preregulator and a linear regulator core circuit, offering minimized power dissipation and high-level stability. The preregulator delivered an internal power voltage of 3 V and supplied internal circuits including the second module (the linear regulator core). The preregulator fitted with an active, low-pass filter provided a low-noise reference voltage to the linear regulator core circuit. To ensure operational stability for the linear regulator, error amplifiers incorporating the Miller compensation technique and featuring a large slewing rate were employed in the two modules. The circuit was successfully implemented in a 0.25 µm, 5 V complementary metal-oxide semiconductor (CMOS) process featuring 20 V drain-extended MOS (DMOS)/bipolar high-voltage devices. The total silicon area, including all pads, was approximately 1.67 mm2. To reduce chip area, bipolar rather than DMOS transistors served as the power transistors. Measured results demonstrated that the designed linear regulator was able to operate at an input voltage ranging from 3.9 to 10 V and offer a maximum 500 mA load current with fixed 2.5 V output voltage.


2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Florence Choong ◽  
Mamun Ibne Reaz ◽  
Mohamad Ibrahim Kamaruzzaman ◽  
Md. Torikul Islam Badal ◽  
Araf Farayez ◽  
...  

Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 143 ◽  
Author(s):  
Imrich Gablech ◽  
Jaroslav Klempa ◽  
Jan Pekárek ◽  
Petr Vyroubal ◽  
Jan Hrabina ◽  
...  

In this work, we demonstrate the simple fabrication process of AlN-based piezoelectric energy harvesters (PEH), which are made of cantilevers consisting of a multilayer ion beam-assisted deposition. The preferentially (001) orientated AlN thin films possess exceptionally high piezoelectric coefficients d33 of (7.33 ± 0.08) pC∙N−1. The fabrication of PEH was completed using just three lithography steps, conventional silicon substrate with full control of the cantilever thickness, in addition to the thickness of the proof mass. As the AlN deposition was conducted at a temperature of ≈330 °C, the process can be implemented into standard complementary metal oxide semiconductor (CMOS) technology, as well as the CMOS wafer post-processing. The PEH cantilever deflection and efficiency were characterized using both laser interferometry, and a vibration shaker, respectively. This technology could become a core feature for future CMOS-based energy harvesters.


2016 ◽  
Vol 25 (07) ◽  
pp. 1630003 ◽  
Author(s):  
Chuang Wang ◽  
Zunchao Li

Various start-up circuits (SUCs) for low input voltage self-powered direct current-type (DC-type) energy harvesters have been proposed in recent years, and their structures have been evolving and changing continuously. A general classification and systematic overview of SUCs are presented here. With the development of CMOS process technologies, recent advances in SUCs have paved the way for lower input voltage, simpler structures, lower cost, and better performance. So far, no works have given an overall description of SUCs for low input voltage self-powered energy harvesters. This work is intended to not only provide insights into the topologies of SUCs, but also make a conclusion which identifies their developing tendency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rahmat Zaki Auliya ◽  
Poh Choon Ooi ◽  
Rad Sadri ◽  
Noor Azrina Talik ◽  
Zhi Yong Yau ◽  
...  

AbstractA new 2D titanium carbide (Ti3C2), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of Ti3C2 multilayers when it is incorporated in the piezoelectric polymer host. The 0.03 g/L of Ti3C2 has been identified as the most appropriate concentration to ensure the optimum performance of the fabricated device with a generated output voltage of about 6.0 V. The probable reasons might be due to the uniformity of nanofiller distribution in the polyvinylidene difluoride (PVDF) and the incorporation of Ti3C2 in a polymer matrix is found to enhance the β-phase of PVDF and diminish the undesired α-phase configuration. Low tapping frequency and force were demonstrated to scavenge electrical energy from abundant mechanical energy resources particularly human motion and environmental stimuli. The fabricated device attained a power density of 14 µW.cm−2 at 10.8 MΩ of load resistor which is considerably high among 2D material-based piezoelectric nanogenerators. The device has also shown stable electrical performance for up to 4 weeks and is practically able to store energy in a capacitor and light up a LED. Hence, the Ti3C2-based piezoelectric nanogenerator suggests the potential to realize the energy harvesting application for low-power electronic devices.


Author(s):  
Raul B. Olympio ◽  
John Donahue ◽  
Adam M. Wickenheiser

Piezoelectric energy harvesters are devices capable of converting the kinetic energy present in vibration-based motion into electrical energy using piezoelectric transducers. This kind of device has its maximum efficiency when the exciting frequency matches its natural frequency. In the past years, some authors have explored the use of human motion as a vibration source, and harvesting energy in this situation is not trivial because the low-frequency characteristics of the motion are not compatible with small, light-weight transducers, which have relatively high natural frequencies. To overcome this problem, a method known as frequency up-conversion is used; it consists of a nonlinear vibration-based, magnetically excited harvester that exhibits frequency-independent performance, allowing the device to be efficient in a wide band of frequencies. In this work, the power output of a piezoelectric energy harvesting with frequency up-conversion submitted to walking and running vibrations is analyzed. Data are collected using an accelerometer located on the front pocket of each subject and then used in simulations. The model used consists of a cantilever beam with a permanent magnetic tip at the free end; this tip interacts with a magnetized structure that adds a nonlinear interaction to the model. A pure resistance matching the device’s impedance at its fundamental frequency is used to account for the output power. To verify the advantages of using the frequency up-conversion method for vibration-based energy harvesters regarding the power output and frequency band, a comparison with the linear cantilever model is analyzed. Also, in order to confirm the simulation results, a prototype of the device is built and submitted to vibration tests using a horizontally oriented motor-driven cart that recreates the motions recorded by the accelerometer; it is tested with and without the magnetic force in order to experimentally determine the nonlinearity’s effects on the power harvesting performance.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2065 ◽  
Author(s):  
Jinyong Zhang ◽  
Shing-Chow Chan ◽  
Hui Li ◽  
Nannan Zhang ◽  
Lei Wang

This paper proposes a compact, high-linearity, and reconfigurable continuous-time filter with a wide frequency-tuning capability for biopotential conditioning. It uses an active filter topology and a new operational-transconductance-amplifier (OTA)-based current-steering (CS) integrator. Consequently, a large time constant τ , good linearity, and linear bandwidth tuning could be achieved in the presented filter with a small silicon area. The proposed filter has a reconfigurable structure that can be operated as a low-pass filter (LPF) or a notch filter (NF) for different purposes. Based on the novel topology, the filter can be readily implemented monolithically and a prototype circuit was fabricated in the 0.18 μm standard complementary-metal–oxide–semiconductor (CMOS) process. It occupied a small area of 0.068 mm2 and consumed 25 μW from a 1.8 V supply. Measurement results show that the cutoff frequency of the LPF could be linearly tuned from 0.05 Hz to 300 Hz and the total-harmonic-distortion (THD) was less than −76 dB for a 2 Hz, 200 mVpp sine input. The input-referred noises were 5.5 μVrms and 6.4 μVrms for the LPF and NF, respectively. A comparison with conventional designs reveals that the proposed design achieved the lowest harmonic distortion and smallest on-chip capacitor. Moreover, its ultra-low cutoff frequency and relatively linear frequency tuning capability make it an attractive solution as an analog front-end for biopotential acquisitions.


2015 ◽  
Vol 10 (2) ◽  
pp. 103-112
Author(s):  
Pedro Toledo ◽  
Hamilton Klimach ◽  
David Cordova ◽  
Sergio Bampi ◽  
Eric Fabris

In this paper a self-biased current reference based on Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Zero Temperature Coefficient (ZTC) condition is proposed. It can be implemented in any Complementary Metal-Oxide-Semiconductor (CMOS) fabrication process and provides another alternative to design current references. In order to support the circuit design, ZTC condition is analyzed using a MOSFET model that is continuous from weak to strong inversion, showing that this condition always occurs from moderate to strong inversion in any CMOS process. The proposed topology was designed in a 180 nm process, operates with a supply voltage from 1.4V to 1.8 V and occupies around 0.010mm2 of silicon area. From circuit simulations our reference showed a temperature coefficient (TC) of 15 ppm/oC from -40 to +85oC, and a fabrication process sensitivity of σ/μ = 4.5% for the current reference, including average process and local mismatch variability analysis. The simulated power supply sensitivity is estimated around 1%/V.


2018 ◽  
Vol 27 (11) ◽  
pp. 1850178 ◽  
Author(s):  
Li-Ye Cheng ◽  
Chen Sun ◽  
Zhen-Wei Zhou

The paper proposed a high efficiency boost converter with constant voltage (CV) and constant current (CC) modes. The selection of CV or CC working mode is based on the requirement, and the transient time from CV to CC mode is 230[Formula: see text][Formula: see text]s. The boost converter is particularly for the use of Li-ion battery portable devices. High efficiency is obtained by sleep/burst mode under light load and pulse width modulation (PWM) mode under heavy load. The quiescent current of the whole chip can be down to 6[Formula: see text][Formula: see text]A when the converter enters the standby mode. The converter has been made of 0.35[Formula: see text][Formula: see text]m complementary metal-oxide semiconductor (CMOS) process. Experimental results show that the peak efficiency is 98.2% at a 1.5[Formula: see text]A output current and a 4.2[Formula: see text]V input voltage.


2017 ◽  
Vol 31 (07) ◽  
pp. 1741011 ◽  
Author(s):  
Kangqi Fan ◽  
Bo Yu ◽  
Yingmin Zhu ◽  
Zhaohui Liu ◽  
Liansong Wang

Scavenging energy from human motion through piezoelectric transduction has been considered as a feasible alternative to batteries for powering portable devices and realizing self-sustained devices. To date, most piezoelectric energy harvesters (PEHs) developed can only collect energy from the uni-directional mechanical vibration. This deficiency severely limits their applicability to human motion energy harvesting because the human motion involves diverse mechanical motions. In this paper, a novel PEH is proposed to harvest energy from the motion of human lower limbs. This PEH is composed of two piezoelectric cantilever beams, a sleeve and a ferromagnetic ball. The two beams are designed to sense the vibration along the tibial axis and conduct piezoelectric conversion. The ball senses the leg swing and actuates the two beams to vibrate via magnetic coupling. Theoretical and experimental studies indicate that the proposed PEH can scavenge energy from both the vibration and the swing. During each stride, the PEH can produce multiple peaks in voltage output, which is attributed to the superposition of different excitations. Moreover, the root-mean-square (RMS) voltage output of the PEH increases when the walking speed ranges from 2 to 8 km/h. In addition, the ultra-low frequencies of human motion are also up-converted by the proposed design.


Sign in / Sign up

Export Citation Format

Share Document