scholarly journals Making Edible Film from Jackfruit Seed Starch (Artocarpus Heterophyllus) with the Addition of Rosella Flower Extract (Hibiscus Sabdariffa L.) as Antioxidant

2021 ◽  
Vol 16 (6) ◽  
pp. 691-699
Author(s):  
Purnama Ningsih ◽  
Sitti Rahmawati ◽  
Ni Made Nila Santi ◽  
Suherman ◽  
Anang Wahid M. Diah

This study aims to determine the physical and chemical characteristics of the edible film of jackfruit seed starch (Artocarpus heterophyllus) added with antioxidant rosella flower extract (Hibiscus sabdariffa). The type of plasticizer used is glycerol. The best treatment in this study was the jackfruit seed edible film with the addition of rosella flower extract 3% (v/v) with the results obtained respectively for a thickness of 0.09 mm, tensile strength 0.003332 N/mm2, elongation percentage 126.36%, elasticity 0.002637 Kgf/mm2, pH 6.122, water absorption 61.67%, solubility 40%, water vapor transmission speed 0.6714 gram/hour m2, FTIR test results show that the process of making edible film in this research is the mixing process Physics, the shelf life of edible film at room temperature is 6 days and at cold temperatures is 8 days, and has antioxidant activity with an IC50 value 219.948 ppm. The addition of rosella flower extract enhances another benefit of edible film which functions as a food protector from the oxidation process (antioxidant).

2016 ◽  
Vol 5 (2) ◽  
pp. 33 ◽  
Author(s):  
Endaruji Sedyadi ◽  
Syafiana Khusna Aini ◽  
Dewi Anggraini ◽  
Dian Prihatiningtias Ekawati

Effect of Rosella (<em>Hibiscus Sabdariffa</em> Linn) Extract and Surimi Dumbo catfish (<em>Clarias gariepinus</em>) addition on Starch-Based Edible Film-Glycerol Mechanical Properties has been done. The purpose of this study is to create an active environment-friendly packaging material. Surimi additions are intended to improve the mechanical properties of bioplastics and additions of Rosella extract intended as a bio-indicator of acidity. The method used was Solvent Casting. An amount of surimi and rosella extract varied to obtain the best mechanical properties. The results shows that the addition of surimi and rosella flower extract significantly effect the elongation of Edible films produced up to 27%.


2021 ◽  
Vol 4 (1) ◽  
pp. 86
Author(s):  
Fazirul Maulana ◽  
Asnani Asnani ◽  
Haslianti Haslianti

ABSTRACT         Sargassum sp. is the most abundant type of seaweed from the brown algae group (Phaeophyceae) which is spread in tropical waters. The aim of this study was to determine the phytochemical content and antioxidant activity of the extract of Sargassum sp. with different drying methods. Sargassum sp. dried using room temperature (± 25ºC) for 21 days and oven (40oC) for 30 hours, then extracted using methanol. Phytochemical tests were carried out to determine the presence of alkaloids, tannins, flavonoids, saponins, steroids, and triterpenoids. The antioxidant activity of the seaweed extract of Sargassum sp. tested by the DPPH method (1-1-diphenyl-2-picrylhydrazyl). Phytochemical test results of the extract Sargassum sp. flavonoids, saponins, triterpenoids, and steroids, while alkaloids and tannins were not found. The value of antioxidant activity in the methanol extract of Sargassum sp. shows a higher room temperature treatment with an IC50 value of 823.652 ppm compared to a treatment temperature of 40oC with an IC50 value of 914.1920 ppm. The drying method affects the antioxidant activity of Sargassum sp. Keywords: Sargassum sp., drying, extraction, phytochemicals, antioxidants.ABSTRAKSargassum sp. merupakan jenis rumput laut paling melimpah dari kelompok alga coklat (Phaeophyceae) yang tersebar di perairan tropis. Tujuan penelitian adalah untuk mengetahui kandungan fitokimia dan aktivitas antioksidan ekstrak Sargassum sp. dengan metode pengeringan yang berbeda. Sargassum sp. dikeringkan menggunakan suhu ruang (± 25ºC) selama 21 hari dan oven (suhu 40oC) selama 30 jam, kemudian diekstrak menggunakan pelarut metanol. Uji fitokimia dilakukan untuk mengetahui keberadaan senyawa alkaloid, tanin, flavonoid, saponin, steroid dan triterpenoid pada ekstrak. Aktivitas antioksidan ekstrak rumput laut Sargassum sp. diuji dengan metode DPPH (1-1-difenil-2-pikrilhidrazil). Hasil uji fitokimia pada ekstrak Sargassum sp. yang dikeringkan pada suhu ruang dan suhu 40oC ditemukan adanya flavonoid, saponin, triterpenoid dan steroid sedangkan alkaloid dan tannin tidak ditemukan. Nilai aktivitas antioksidan pada ekstrak metanol Sargassum sp. menunjukan perlakuan suhu ruang lebih tinggi dengan nilai IC50 823,652 ppm dibandingkan perlakuan suhu 40oC dengan nilai IC50 914,1920 ppm. Metode pengeringan berpengaruah terhadap aktivitas antioksidan dari Sargassum sp.Kata kunci: Sargassum sp., pengeringan, ekstraksi, fitokimia, antioksidan.


2021 ◽  
Vol 11 (3) ◽  
pp. 1273
Author(s):  
Chen Feng ◽  
Jiping Zhou ◽  
Xiaodong Xu ◽  
Yani Jiang ◽  
Hongcan Shi ◽  
...  

In recent years, 3D printing has received increasing attention from researchers. This technology overcomes the limitations of traditional technologies by printing precise and personalized scaffold with arbitrary shapes, pore structures, and porosities for the applications in various tissues. The cellulose nanocrystal (CNC) is extracted from Humulus Japonicus (HJS) and mixed with poly(ε-caprolactone) (PCL) to prepare a series of CNC/PCL composites for printing. Based on the analysis of the physical and chemical properties of the series of the CNC/PCL composites, an optimal mass ratio of CNC to PCL was obtained. The Solidworks was used to simulate the stretching and compression process of the scaffolds with three different patterns under an external force. The flow of nutrient solution in the scaffolds with different patterns was simulated by ANSYS FLUENT, and then a new optimization scaffold pattern with a concave hexagon shape was advised based on the simulation results. Collectively, the mechanical test results of the material and scaffold confirmed that the optimal filling amount of the CNC was 5%, and the scaffold pattern with concave hexagon shape exhibited better mechanical properties and suitable for the transport of cells and nutrients, which is expected to be more widely used in 3D printing.


2021 ◽  
Vol 5 (4) ◽  
pp. 110
Author(s):  
Flaminio Sales ◽  
Andrews Souza ◽  
Ronaldo Ariati ◽  
Verônica Noronha ◽  
Elder Giovanetti ◽  
...  

Polydimethylsiloxane (PDMS) is a polymer that has attracted the attention of researchers due to its unique properties such as transparency, biocompatibility, high flexibility, and physical and chemical stability. In addition, PDMS modification and combination with other materials can expand its range of applications. For instance, the ability to perform superhydrophobic coating allows for the manufacture of lenses. However, many of these processes are complex and expensive. One of the most promising modifications, which consists of the development of an interchangeable coating, capable of changing its optical characteristics according to some stimuli, has been underexplored. Thus, we report an experimental study of the mechanical and optical properties and wettability of pure PDMS and of two PDMS composites with the addition of 1% paraffin or beeswax using a gravity casting process. The composites’ tensile strength and hardness were lower when compared with pure PDMS. However, the contact angle was increased, reaching the highest values when using the paraffin additive. Additionally, these composites have shown interesting results for the spectrophotometry tests, i.e., the material changed its optical characteristics when heated, going from opaque at room temperature to transparent, with transmittance around 75%, at 70 °C. As a result, these materials have great potential for use in smart devices, such as sensors, due to its ability to change its transparency at high temperatures.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 330
Author(s):  
Pan Ma ◽  
Pengcheng Ji ◽  
Yandong Jia ◽  
Xuerong Shi ◽  
Zhishui Yu ◽  
...  

The Al-20Si-5Fe-3Cu-1Mg alloy was fabricated using selective laser melting (SLM). The microstructure and properties of the as-prepared SLM, post-treated SLM, and SLM with substrate plate heating are studied. The as-prepared SLM sample shows a non-uniform microstructure with four different phases: fcc-αAl, eutectic Al-Si, Al2MgSi, and δ-Al4FeSi2. With thermal treatment, the phases become coarser and the δ-Al4FeSi2 phase transforms partially to β-Al5FeSi. The sample produced with SLM substrate plate heating shows a relatively uniform microstructure without a distinct difference between hatch overlaps and track cores. Room temperature compression test results show that an as-prepared SLM sample reaches a maximum strength (862 MPa) compared to the heat-treated (524 MPa) and substrate plate heated samples (474 MPa) due to the presence of fine microstructure and the internal stresses. The reduction in strength of the sample produced with substrate plate heating is due to the coarsening of the microstructure, but the plastic deformation shows an improvement (20%). The present observations suggest that substrate plate heating can be effectively employed not only to minimize the internal stresses (by impacting the cooling rate of the process) but can also be used to modulate the mechanical properties in a controlled fashion.


2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


2011 ◽  
Vol 391-392 ◽  
pp. 1445-1449
Author(s):  
Chun Hua Zhang ◽  
Shi Lin Luan ◽  
Xiu Song Qian ◽  
Bao Hua Sun ◽  
Wen Sheng Zhang

The influences of low temperature on the interlaminar properties for PBO fiber/epoxy composites have been studied at liquid nitrogen temperature (77 K) in terms of three point bending test. Results showed that the interlaminar shear strength at 77 K were significantly higher than those at room temperature (RT). For the analysis of the test results, the tensile behaviors of epoxy resin at both room temperature and liquid nitrogen temperature were investigated. The interface between fiber and matrix was observed using SEM images.


Author(s):  
Bryan Holler

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter; and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as any nonsatellite large enough to be rounded by its own gravity. Practically speaking, this means any nonsatellite with a diameter >400 km. In the trans-Neptunian region, there are more than 100 objects that satisfy this definition, based on published results and diameter estimates. The dynamical structure of the trans-Neptunian region records the migration history of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures. The largest TNO dwarf planets, those officially recognized by the IAU, plus others such as Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water ice on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of nonvolatile species, such as H2O (water), NH3 (ammonia), and organics provide valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 points to ancient cryovolcanism caused by internal differentiation of ice from rock. Organic material, formed through radiation processing of surface ices such as CH4, records the radiation histories of these objects as well as providing clues to their primordial surface compositions. The dynamical, physical, and chemical diversity of the >100 TNO dwarf planets are key to understanding the formation of the solar system and subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.


1973 ◽  
Vol 51 (21) ◽  
pp. 3605-3619 ◽  
Author(s):  
C. Willis ◽  
R. A. Back

Preparation of di-imide by passing hydrazine vapor through a microwave discharge yields mixtures with NH3 containing typically about 15% N2H2, estimated from the gases evolved on decomposition. The behavior of the mixture (which melts at −65 °C) on warming from −196 to −30 °C suggests a strong interaction between the components. Measurements of magnetic susceptibility and e.p.r. experiments showed that N2H2 is not strongly paramagnetic, which with other observations points to a singlet rather than a triplet ground-state.Di-imide can be vaporized efficiently, together with NH3, by rapid warming, and the vapor is surprisingly long-lived, with a typical half-life of several minutes at room temperature. The near-u.v. (3200–4400 Å) absorption spectrum of the vapor was photographed; it shows well-defined but diffuse bands, with εmax = 6(± 3) at 3450 Å.Di-imide decomposes at room temperature in two ways:[Formula: see text][Formula: see text]Formation of NH3 was not observed but cannot be ruled out. The decomposition of the vapor is complicated by a sizeable and variable decomposition that occurs rapidly during the vaporization. The stoichiometry of this and the vapor-phase decomposition depends on total pressure and di-imide concentration. The kinetics of the decomposition of the vapor were studied from 22 to 200 °C by following the disappearance of N2H2 by absorption of light at 3450 Å, or the formation of N2H4 by absorption at 2400 Å, and by mass spectrometry. The kinetics are complex and can be either first- or second-order, or mixed, depending on surface conditions. The effect of olefin additives on the decomposition was studied, and is also complex.Mechanisms for the decomposition are discussed, including the possible role of trans-cis isomerization. The relatively long lifetime found for di-imide in the gas phase suggests that it may be an important intermediate in many reactions of hydronitrogen systems.


Sign in / Sign up

Export Citation Format

Share Document