scholarly journals A Visual Tracking Algorithm Based on Estimation of Regression Probability Distribution

2021 ◽  
Vol 38 (4) ◽  
pp. 1209-1215
Author(s):  
Xu Han ◽  
Shang Jiang ◽  
Jia Yu ◽  
Feng Zhang

During target tracking, the target is often interfered by uncertainties like occlusion and motion blur. The interference leads to inaccurate tracking and even loss of the target. To solve the problem, this paper designs a target tracking algorithm based on the estimation of regression probability distribution (RPDE). Specifically, the uncertainty degree of the tracking frame was estimated by learning the statistical properties of regression parameters, and the quality of that frame was evaluated by fusing the predicted regression probability scores with classification scores. Next, an anchor-free regression mechanism was introduced to improve the computing speed. During network training, a simple and efficient strategy was presented for joint prediction, which jointly expresses classification scores and regression scores to eliminate the extra quality estimation branches in training and prediction. After that, the performance of our algorithm was tested on several public benchmarks, namely, OTB2015, VOT2016, GOT10k, and UAV123, and contrasted with several state-of-the-art algorithms. The results show that the proposed algorithm, named SiamRPDE for short, performed excellently on several benchmarks, and achieved the speed of 125 frames per second (FPS).

2020 ◽  
Vol 8 ◽  
pp. 539-555
Author(s):  
Marina Fomicheva ◽  
Shuo Sun ◽  
Lisa Yankovskaya ◽  
Frédéric Blain ◽  
Francisco Guzmán ◽  
...  

Quality Estimation (QE) is an important component in making Machine Translation (MT) useful in real-world applications, as it is aimed to inform the user on the quality of the MT output at test time. Existing approaches require large amounts of expert annotated data, computation, and time for training. As an alternative, we devise an unsupervised approach to QE where no training or access to additional resources besides the MT system itself is required. Different from most of the current work that treats the MT system as a black box, we explore useful information that can be extracted from the MT system as a by-product of translation. By utilizing methods for uncertainty quantification, we achieve very good correlation with human judgments of quality, rivaling state-of-the-art supervised QE models. To evaluate our approach we collect the first dataset that enables work on both black-box and glass-box approaches to QE.


2012 ◽  
Vol 501 ◽  
pp. 577-582 ◽  
Author(s):  
Yi Hu Huang ◽  
Man Hu ◽  
Hong Lei Chong ◽  
Xi Mei Jia ◽  
Ji Xiang Ma ◽  
...  

In this paper, the robot vision systems are studied. Through the analysis of the visual tracking process, this paper classifies and introduces several commonly track. The features affecting the quality of target tracking, such as block, rotation, translation deformation and others, are analyzed and discussed. At last, some further directions of target tracking algorithm are also shortly addressed.


2019 ◽  
Vol 26 (1) ◽  
pp. 73-94
Author(s):  
Arda Tezcan ◽  
Véronique Hoste ◽  
Lieve Macken

AbstractVarious studies show that statistical machine translation (SMT) systems suffer from fluency errors, especially in the form of grammatical errors and errors related to idiomatic word choices. In this study, we investigate the effectiveness of using monolingual information contained in the machine-translated text to estimate word-level quality of SMT output. We propose a recurrent neural network architecture which uses morpho-syntactic features and word embeddings as word representations within surface and syntactic n-grams. We test the proposed method on two language pairs and for two tasks, namely detecting fluency errors and predicting overall post-editing effort. Our results show that this method is effective for capturing all types of fluency errors at once. Moreover, on the task of predicting post-editing effort, while solely relying on monolingual information, it achieves on-par results with the state-of-the-art quality estimation systems which use both bilingual and monolingual information.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2010 ◽  
Vol 32 (9) ◽  
pp. 2052-2057
Author(s):  
Xiao-yan Sun ◽  
Jian-dong Li ◽  
Yan-hui Chen ◽  
Wen-zhu Zhang ◽  
Jun-liang Yao

Author(s):  
Megha Chhabra ◽  
Manoj Kumar Shukla ◽  
Kiran Kumar Ravulakollu

: Latent fingerprints are unintentional finger skin impressions left as ridge patterns at crime scenes. A major challenge in latent fingerprint forensics is the poor quality of the lifted image from the crime scene. Forensics investigators are in permanent search of novel outbreaks of the effective technologies to capture and process low quality image. The accuracy of the results depends upon the quality of the image captured in the beginning, metrics used to assess the quality and thereafter level of enhancement required. The low quality of the image collected by low quality scanners, unstructured background noise, poor ridge quality, overlapping structured noise result in detection of false minutiae and hence reduce the recognition rate. Traditionally, Image segmentation and enhancement is partially done manually using help of highly skilled experts. Using automated systems for this work, differently challenging quality of images can be investigated faster. This survey amplifies the comparative study of various segmentation techniques available for latent fingerprint forensics.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-25
Author(s):  
Elham Shamsa ◽  
Alma Pröbstl ◽  
Nima TaheriNejad ◽  
Anil Kanduri ◽  
Samarjit Chakraborty ◽  
...  

Smartphone users require high Battery Cycle Life (BCL) and high Quality of Experience (QoE) during their usage. These two objectives can be conflicting based on the user preference at run-time. Finding the best trade-off between QoE and BCL requires an intelligent resource management approach that considers and learns user preference at run-time. Current approaches focus on one of these two objectives and neglect the other, limiting their efficiency in meeting users’ needs. In this article, we present UBAR, User- and Battery-aware Resource management, which considers dynamic workload, user preference, and user plug-in/out pattern at run-time to provide a suitable trade-off between BCL and QoE. UBAR personalizes this trade-off by learning the user’s habits and using that to satisfy QoE, while considering battery temperature and State of Charge (SOC) pattern to maximize BCL. The evaluation results show that UBAR achieves 10% to 40% improvement compared to the existing state-of-the-art approaches.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 567
Author(s):  
Donghun Yang ◽  
Kien Mai Mai Ngoc ◽  
Iksoo Shin ◽  
Kyong-Ha Lee ◽  
Myunggwon Hwang

To design an efficient deep learning model that can be used in the real-world, it is important to detect out-of-distribution (OOD) data well. Various studies have been conducted to solve the OOD problem. The current state-of-the-art approach uses a confidence score based on the Mahalanobis distance in a feature space. Although it outperformed the previous approaches, the results were sensitive to the quality of the trained model and the dataset complexity. Herein, we propose a novel OOD detection method that can train more efficient feature space for OOD detection. The proposed method uses an ensemble of the features trained using the softmax-based classifier and the network based on distance metric learning (DML). Through the complementary interaction of these two networks, the trained feature space has a more clumped distribution and can fit well on the Gaussian distribution by class. Therefore, OOD data can be efficiently detected by setting a threshold in the trained feature space. To evaluate the proposed method, we applied our method to various combinations of image datasets. The results show that the overall performance of the proposed approach is superior to those of other methods, including the state-of-the-art approach, on any combination of datasets.


Sign in / Sign up

Export Citation Format

Share Document