scholarly journals Growth of 3C-SiC Films on Si (111) and Sapphire (0001) Substrates by MOCVD

2012 ◽  
Vol 15 (1) ◽  
pp. 25 ◽  
Author(s):  
R. Beisenov ◽  
R. Ebrahim ◽  
Z.A. Mansurov ◽  
S.Zh. Tokmoldin ◽  
B.Z. Mansurov ◽  
...  

Thick silicon carbide films were grown on sapphire (0001) and silicon (111) substrates using metal organic chemical vapor deposition (MOCVD). Diethylmethylsilane (DEMS) has been used as a single precursor, which contain Si and C atoms in the same molecule, without any carrier or bubbler gas. Atomic structure, surface composition and morphology have been investigated by XRD, AES, SEM and AFM analysis. SiC films of 5-7 micron thickness were grown at a rate of ~ 40 nm/min on sapphire (0001) and Si (111) substrates. The films grown at low temperature (850 ºC and 900 ºC) on both substrates show crystalline 3C-SiC in the (111) orientation. XRD results show that the orientation of the crystal structure does not depend of the substrate orientation AFM pictures of SiC films grown on sapphire (0001) exhibit more crystalline order as compared to films grown on the Si (111) substrates. AES of the grown films shows that in both cases the Si peak intensity is greater than that of carbon. This work shows promise for the development of alternative processes for developing low cost, large area substrates for application to IIInitrides LED and UV photodetector fabrication and also for gas detector application.

1997 ◽  
Vol 51 (6) ◽  
pp. 880-882 ◽  
Author(s):  
Brian R. Stallard ◽  
Robert K. Rowe ◽  
Arnold J. Howard ◽  
G. Ronald Hadley ◽  
Gregory A. Vawter ◽  
...  

Miniature, low-cost sensors are in demand for a variety of applications in industry, medicine, and environmental sciences. As a first step in developing such a sensor, we have etched a grating into a GaAs rib waveguide to serve as a wavelength-dispersive element. The device was fabricated with the techniques of metal-organic chemical vapor deposition, electron-beam lithography, optical lithography, and reactive ion-beam etching. While full integration is the eventual goal of this work, for the present, a functional spectrometer was constructed with the addition of a discrete source, sample cell, lenses, and detector. The waveguide spectrometer has a spectral resolution of 7.5 nm and a spectral dispersion of 0.11°/ nm. As presently configured, it functions in the spectral range of 1500 to 1600 nm. A demonstration of the analytical capability of the waveguide spectrometer is presented. The problem posed is the determination of diethanol amine in an ethanol solution (about 10 to 100 g/L). This procedure involves the detection of the first overtone of the NH stretch at 1545 nm in a moderately absorbing solvent background. The standard error of prediction for the determination was 5.4 g/L.


2020 ◽  
Vol 10 (9) ◽  
pp. 3050 ◽  
Author(s):  
Aditya Prabaswara ◽  
Jens Birch ◽  
Muhammad Junaid ◽  
Elena Alexandra Serban ◽  
Lars Hultman ◽  
...  

Magnetron sputter epitaxy (MSE) offers several advantages compared to alternative GaN epitaxy growth methods, including mature sputtering technology, the possibility for very large area deposition, and low-temperature growth of high-quality electronic-grade GaN. In this article, we review the basics of reactive sputtering for MSE growth of GaN using a liquid Ga target. Various target biasing schemes are discussed, including direct current (DC), radio frequency (RF), pulsed DC, and high-power impulse magnetron sputtering (HiPIMS). Examples are given for MSE-grown GaN thin films with material quality comparable to those grown using alternative methods such as molecular-beam epitaxy (MBE), metal–organic chemical vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE). In addition, successful GaN doping and the fabrication of practical devices have been demonstrated. Beyond the planar thin film form, MSE-grown GaN nanorods have also been demonstrated through self-assembled and selective area growth (SAG) method. With better understanding in process physics and improvements in material quality, MSE is expected to become an important technology for the growth of GaN.


2019 ◽  
Vol 28 (01n02) ◽  
pp. 1940007 ◽  
Author(s):  
M. A. Mastro ◽  
J. K. Hite ◽  
C. R. Eddy ◽  
M. J. Tadjer ◽  
S. J. Pearton ◽  
...  

Recent breakthroughs in bulk crystal growth of β-Ga2O3 by the edge-defined film-fed technique has led to the commercialization of large-area β-Ga2O3 substrates. Standard epitaxy approaches are being utilized to develop various thin-film β-Ga2O3 based devices including lateral transistors. This article will discuss the challenges for metal organic chemical vapor deposition (MOCVD) of β-Ga2O3 and the design criteria for use of this material system in power electronic device structures.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 799 ◽  
Author(s):  
Mariana Fraga ◽  
Rodrigo Pessoa

A search of the recent literature reveals that there is a continuous growth of scientific publications on the development of chemical vapor deposition (CVD) processes for silicon carbide (SiC) films and their promising applications in micro- and nanoelectromechanical systems (MEMS/NEMS) devices. In recent years, considerable effort has been devoted to deposit high-quality SiC films on large areas enabling the low-cost fabrication methods of MEMS/NEMS sensors. The relatively high temperatures involved in CVD SiC growth are a drawback and studies have been made to develop low-temperature CVD processes. In this respect, atomic layer deposition (ALD), a modified CVD process promising for nanotechnology fabrication techniques, has attracted attention due to the deposition of thin films at low temperatures and additional benefits, such as excellent uniformity, conformability, good reproducibility, large area, and batch capability. This review article focuses on the recent advances in the strategies for the CVD of SiC films, with a special emphasis on low-temperature processes, as well as ALD. In addition, we summarize the applications of CVD SiC films in MEMS/NEMS devices and prospects for advancement of the CVD SiC technology.


Nanoscale ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 336-341 ◽  
Author(s):  
Kehao Zhang ◽  
Bhakti Jariwala ◽  
Jun Li ◽  
Natalie C. Briggs ◽  
Baoming Wang ◽  
...  

Large area 2D MoS2 and WSe2 are integrated on 3D GaN by metal organic chemical vapor deposition (MOCVD). The thickness-dependent vertical tunneling and interlayer charge transfer is carefully studied. This work shows that few layer WSe2 film is the appropriate choice towards device application of synthetic 2D/3D heterostructures.


1999 ◽  
Vol 574 ◽  
Author(s):  
J. A. Belot ◽  
A. Wang ◽  
N. L. Edleman ◽  
J. R. Babcock ◽  
M. V. Metz ◽  
...  

AbstractThis contribution describes the synthesis, characterization, and implementation of new lanthanide and main group metal-organic chemical vapor deposition precursors based on the 2,2-dimethyl-5-N-2-methoxyethylimino-3-hexanonato ligand system. The new homoleptic, fluorinefree, low melting, and highly volatile complexes are ideally suited for oxide MOCVD, and in many applications are superior to standard β-diketonates while maintaining ease of synthesis and low cost. This is explicitly demonstrated by the growth of high quality CeO2/YBa2Cu3O7-δ multilayers.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1031 ◽  
Author(s):  
Chunyang Jia ◽  
Dae-Woo Jeon ◽  
Jianlong Xu ◽  
Xiaoyan Yi ◽  
Ji-Hyeon Park ◽  
...  

In this work, we have achieved synthesizing large-area high-density β-Ga2O3 nanowires on c-plane sapphire substrate by metal–organic chemical vapor deposition assisted with Au nanocrystal seeds as catalysts. These nanowires exhibit one-dimensional structures with Au nanoparticles on the top of the nanowires with lengths exceeding 6 μm and diameters ranging from ~50 to ~200 nm. The β-Ga2O3 nanowires consist of a single-crystal monoclinic structure, which exhibits strong ( 2 ¯ 01) orientation, confirmed by transmission electronic microscopy and X-ray diffraction analysis. The PL spectrum obtained from these β-Ga2O3 nanowires exhibits strong emissions centered at ~360 and ~410 nm, respectively. The energy band gap of the β-Ga2O3 nanowires is estimated to be ~4.7 eV based on an optical transmission test. A possible mechanism for the growth of β-Ga2O3 nanowires is also presented.


Sign in / Sign up

Export Citation Format

Share Document