scholarly journals Single-chip receiving module with built-in antenna for the frequency range 66–67 GHz for 5G communication systems

2018 ◽  
Vol 28 (4) ◽  
pp. 23-29
Author(s):  
D. V. Krapukhin ◽  
◽  
D. L. Gnatyuk ◽  
A. V. Zuev ◽  
◽  
...  
2018 ◽  
Vol 10 (5-6) ◽  
pp. 737-743 ◽  
Author(s):  
Felix Rautschke ◽  
Stefan May ◽  
Sebastian Drews ◽  
Daniel Maassen ◽  
Georg Boeck

AbstractIn this contribution, a design methodology for octave-bandwidth power amplifiers (PA) for 5G communication systems using surface mount dual-flat-no-lead packaged gallium-nitride high-electron-mobility transistor devices is presented. Systematic source- and load-pull simulations have been used to find the optimum impedances across 75% fractional bandwidth for S- (1.9–4.2 GHz) and C-band (3.8–8.4 GHz) PAs. The harmonic impact is considered to improve the output power and efficiency of the PAs. Utilizing the characteristic behavior of the transistors leads to modified optimum fundamental load impedances for the low-frequency range, which have higher gain compared with high-frequency range, and minimize the influence of the higher harmonics. Continuous wave large-signal measurements of the realized S-Band PA show a power added efficiency (PAE) of more than 40% from 1.9–4.2 GHz and a flat power gain of 11 dB while achieving a saturated output power of 10 W. The measured performance of the C-Band PA demonstrates a delivered power between 3.5 and 5 W across the frequency range of 3.8–8.4 GHz. A flat power gain of around 9 ± 0.5 dB with 26–40% PAE is achieved.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 477
Author(s):  
Warsha Balani ◽  
Mrinal Sarvagya ◽  
Ajit Samasgikar ◽  
Tanweer Ali ◽  
Pradeep Kumar

In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole antenna and has obtained an impedance bandwidth of 38.9:1 (ii) another important characteristic of the presented antenna is its larger bandwidth dimension ratio (BDR) value of 6596 that is accomplished by augmenting the electrical length of the patch. The electrical dimension of the proposed antenna is 0.18λ×0.16λ (λ corresponds to the lower end operating frequency). The designed antenna achieves a frequency range from 1.22 to 47.5 GHz with a fractional bandwidth of 190% and exhibiting S11 < −10 dB in simulation. For validating the simulated outcomes, the antenna model is fabricated and measured. Good conformity is established between measured and simulated results. Measured frequency ranges from 1.25 to 40 GHz with a fractional bandwidth of 188%, BDR of 6523 and S11 < −10 dB. Even though the presented antenna operates properly over the frequency range from 1.22 to 47.5 GHz, the results of the experiment are measured till 40 GHz because of the high-frequency constraint of the existing Vector Network Analyzer (VNA). The designed SWB antenna has the benefit of good gain, concise dimension, and wide bandwidth above the formerly reported antenna structures. Simulated gain varies from 0.5 to 10.3 dBi and measured gain varies from 0.2 to 9.7 dBi. Frequency domain, as well as time-domain characterization, has been realized to guide the relevance of the proposed antenna in SWB wireless applications. Furthermore, an equivalent circuit model of the proposed antenna is developed, and the response of the circuit is obtained. The presented antenna can be employed in L, S, C, X, Ka, K, Ku, and Q band wireless communication systems.


2021 ◽  
Vol 42 (4) ◽  
pp. 357-370
Author(s):  
M. A. Salhi ◽  
T. Kleine-Ostmann ◽  
T. Schrader

AbstractIncreasing data rates in wireless communications are accompanied with the need for new unoccupied and unregulated bandwidth in the electromagnetic spectrum. Higher carrier frequencies in the lower THz frequency range might offer the solution for future indoor wireless communication systems with data rates of 100 Gbit/s and beyond that cannot be located elsewhere. In this review, we discuss propagation channel measurements in an extremely broad frequency range from 50 to 325 GHz in selected indoor communication scenarios including kiosk downloading, office room communication, living rooms, and typical industrial environments.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2674
Author(s):  
Qingying Ren ◽  
Wen Zuo ◽  
Jie Xu ◽  
Leisheng Jin ◽  
Wei Li ◽  
...  

At present, the proposed microwave power detection systems cannot provide a high dynamic detection range and measurement sensitivity at the same time. Additionally, the frequency band of these detection systems cannot cover the 5G-communication frequency band. In this work, a novel microwave power detection system is proposed to measure the power of the 5G-communication frequency band. The detection system is composed of a signal receiving module, a power detection module and a data processing module. Experiments show that the detection frequency band of this system ranges from 1.4 GHz to 5.3 GHz, the dynamic measurement range is 70 dB, the minimum detection power is −68 dBm, and the sensitivity is 22.3 mV/dBm. Compared with other detection systems, the performance of this detection system in the 5G-communication frequency band is significantly improved. Therefore, this microwave power detection system has certain reference significance and application value in the microwave signal detection of 5G communication systems.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
J. Chung ◽  
S. Hamedi-Hagh

This paper presents the design of an inductor and an antenna for a portable device with GPS and FM capabilities. The inductor is designed to operate at the lower frequency FM band as part of a matching network and the antenna is designed to operate at the higher frequency GPS L1 band. The FR4 PCB used has a thickness of 1.6 mm with a dielectric constant of 3.8 and has two metallization layers. The inductor is designed with 1.5 mm trace width, 3.5 turns, and has a dimension of 14.5 mm × 14.5 mm. It has an inductance of 95 nH, a resistance of 2.9 Ω, a self-resonance frequency of 500 MHz, and a maximum Q of 51 from 100 MHz to 200 MHz (FM band). The antenna has a dimension of 49 mm × 36 mm and is designed to operate at 1.5754 GHz L1 band. It also has a return loss of −36 dB and a measured bandwidth of 250 MHz.


2021 ◽  
Author(s):  
Vladimir Sergeevich Milyutin ◽  
Eugeniy Vasilevich Rogozhnikov ◽  
Kirill Petrovskiy ◽  
Dmitriy Pokamestov ◽  
Edgar Dmitriyev ◽  
...  

Abstract Frequency synchronization is a necessary operation for all wireless communication systems. Due to the wide frequency range defined for 5G NR systems, this procedure becomes critical. To ensure high transmission rates and the use of high-order modulation, up to 256 QAM for 5G communication systems, it is necessary to ensure high frequency synchronization accuracy. In this article, we have reviewed various approaches to implementing frequency synchronization and proposed, in our opinion, the most effective method for correcting the frequency shift of the signal.


Sign in / Sign up

Export Citation Format

Share Document