scholarly journals Enriching Tiger Nut Milk with Sodium Caseinate and Xanthan Gum Improves the Physical Stability and Consumer Acceptability

2021 ◽  
Vol 8 (2) ◽  
pp. 40-49
Author(s):  
Nazir Kizzie-Hayford ◽  
Jerry Ampofo-Asiama ◽  
Susann Zahn ◽  
Doris Jaros ◽  
Harald Rohm

Tiger nut milk (TNM) shows limited colloidal stability, which affects consumer acceptability in many parts of the world where tiger nut is cultivated. In this study, addition of proteins and hydrocolloids was used for improving the stability, and the impact on physical properties and consumer acceptance is reported. Enriching TNM by 3 g/100 g sodium caseinate and 0.1 g/100 g xanthan gum successfully impeded creaming and serum formation and resulted in a decrease of the instability index from 0.408 ± 0.023 to 0.015 ± 0.00 after applying forced sedimentation at 3000 x g for 2 h. After TNM enrichment, the viscosity of TNM increased from 3.0 ± 0.10 mPa.s to 285 ± 18 mPa.s which remained stable at elevated storage temperature. Flash profiling of TNM resulted in emerging descriptors namely sweet, sediment, watery, raw. Hedonic assessment by 82 consumers showed that plain TNM had the lowest rating concerning particular sensory attributes and acceptance. Enrichment resulted in more viscous, sweet and thick TNM products, leading to higher consumer ratings of attributes and acceptability. Thus, enriching TNM by sodium caseinates and xanthan gum is promising for improving the dispersion stability and consumer acceptance.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 693
Author(s):  
Rubén Llinares ◽  
Pablo Ramírez ◽  
José Antonio Carmona ◽  
Luis Alfonso Trujillo-Cayado ◽  
José Muñoz

In this work, nanoemulsion-based delivery system was developed by encapsulation of fennel essential oil. A response surface methodology was used to study the influence of the processing conditions in order to obtain monomodal nanoemulsions of fennel essential oil using the microchannel homogenization technique. Results showed that it was possible to obtain nanoemulsions with very narrow monomodal distributions that were homogeneous over the whole observation period (three months) when the appropriate mechanical energy was supplied by microfluidization at 14 MPa and 12 passes. Once the optimal processing condition was established, nanoemulsions were formulated with advanced performance xanthan gum, which was used as both viscosity modifier and emulsion stabilizer. As a result, more desirable results with enhanced physical stability and rheological properties were obtained. From the study of mechanical spectra as a function of aging time, the stability of the nanoemulsions weak gels was confirmed. The mechanical spectra as a function of hydrocolloid concentration revealed that the rheological properties are marked by the biopolymer network and could be modulated depending on the amount of added gum. Therefore, this research supports the role of advanced performance xanthan gum as a stabilizer of microfluidized fennel oil-in-water nanoemulsions. In addition, the results of this research could be useful to design and formulate functional oil-in-water nanoemulsions with potential application in the food industry for the delivery of nutraceuticals and antimicrobials.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Deryl Nii Okantey Kuevi ◽  
Noble Kuntworbe ◽  
Enoch Ayertey

Dispersed systems such as emulsions are easily destabilised during processing and storage since they are thermodynamically unstable systems. It is for this reason emulsifiers/stabilisers are frequently employed in pharmaceutical emulsion formulations to increase their short- and long-term kinetic stability. This current study seeks to investigate the potential emulsifying property of gums obtained from Khaya senegalensis (family: Meliaceae) trees. Gums were collected, authenticated, oven-dried, milled, filtered, and purified using 96% ethanol. The microbial quality of the gum was assessed following the BP (2013) specifications. The purified gum was free from some selected pathogenic microorganisms, rendering the gum safe for consumption. The emulsifying property was investigated by formulating emulsions using castor oil and employing the dry gum method. The ratios of oil-to-water-to-gum for the formulation of a stable emulsion were determined. The stability of the emulsion was evaluated, and an effort was made to improve the stability by incorporating Tween 80, hydroxypropyl methylcellulose, and xanthan gum. From the results, it can be inferred that Tween 80 (0.5%) was able to stabilise the emulsion. Addition of xanthan gum worsened the creaming. The effects of pH (4.0, 5.5, 7.2, 9.0, and 11.0) and electrolytes (0.1 M of NaCl, KCl, and CaCl2) on the physical stability of oil-in-water emulsions were studied during 12 weeks of storage. Percentage creaming volume and whether there was phase inversion were the criteria used as the evaluation parameter. From the percentage creaming volume data, emulsions formulated with both gums showed the lowest creaming volumes at pH of 7.2, followed by the acidic regions (pH 4.0, 5.5), with the basic regions (pH 9.0, 11.0) recording the highest creaming volumes. The effects of the various electrolytes at a constant concentration of 0.1 M on the o/w emulsions were found in this order NaCl < KCl < CaCl2. This study proves that Khaya senegalensis gum can successfully be employed as an emulsifying agent in pharmaceutical formulations.


2020 ◽  
pp. 106439
Author(s):  
Andrew J. Gravelle ◽  
Reed A. Nicholson ◽  
Shai Barbut ◽  
Alejandro G. Marangoni

2020 ◽  
Vol 35 (5) ◽  
pp. 501-507
Author(s):  
Emily Henkel ◽  
Rebecca Vella ◽  
Andrew Fenning

AbstractIntroduction:Tenecteplase is a thrombolytic protein drug used by paramedics, emergency responders, and critical care medical personnel for the prehospital treatment of blood clotting diseases. Minimizing the time between symptom onset and the initiation of thrombolytic treatment is important for reducing mortality and improving patient outcomes. However, the structure of protein drug molecules makes them susceptible to physical and chemical degradation that could potentially result in considerable adverse effects. In locations that experience extreme temperatures, lyophilized tenecteplase transported in emergency service vehicles (ESVs) may be subjected to conditions that exceed the manufacturer’s recommendations, particularly when access to the ambulance station is limited.Study Objective:This study evaluated the impact of heat exposure (based on temperatures experienced in an emergency vehicle during summer in a regional Australian city) on the stability and efficacy of lyophilized tenecteplase.Methods:Vials containing 50mg lyophilized tenecteplase were stored at 4.0°C (39.2°F), 35.5°C (95.9°F), or 44.9°C (112.8°F) for a continuous period of eight hours prior to reconstitution. Stability and efficacy were determined through assessment of: optical clarity and pH; analyte concentration using UV spectrometry; percent protein monomer and single chain protein using size-exclusion chromatography; and in vitro bioactivity using whole blood clot weight and fibrin degradation product (D-dimer) development.Results:Heat treatment, particularly at 44.9°C, was found to have the greatest impact on tenecteplase solubility; the amount of protein monomer and single chain protein lost (suggesting structural vulnerability); and the capacity for clot lysis in the form of decreased D-dimer production. Meanwhile, storage at 4.0°C preserved tenecteplase stability and in vitro bioactivity.Conclusion:The findings indicate that, in its lyophilized form, even relatively short exposure to high temperature can negatively affect tenecteplase stability and pharmacological efficacy. It is therefore important that measures are implemented to ensure the storage temperature is kept below 30.0°C (86.0°F), as recommended by manufacturers, and that repeated refrigeration-heat cycling is avoided. This will ensure drug administration provides more replicable thrombolysis upon reaching critical care facilities.


2020 ◽  
Vol 58 (5) ◽  
pp. 828-835 ◽  
Author(s):  
Thierry P.I.J.M. Canisius ◽  
J.W.P. Hans Soons ◽  
Pauline Verschuure ◽  
Emmeke A. Wammes-van der Heijden ◽  
Rob P.W. Rouhl ◽  
...  

AbstractBackgroundTherapeutic drug monitoring (TDM) of antiepileptic drugs (AEDs) can serve as a valuable tool in optimising and individualising epilepsy treatment, especially in vulnerable groups such as pregnant women, the elderly and children. Unfortunately, TDM is often performed suboptimally due to limitations in blood collection. Therefore, we investigated volumetric absorptive micro sampling (VAMS) – a new home-sampling technique. We aimed to evaluate VAMS to determine and quantify the different AEDs and concentrations of 16 different AEDs in whole blood collected by VAMS.MethodsPatient blood samples (n = 138) were collected via venepunctures at the Academic Centre for Epileptology Kempenhaeghe. AED concentrations were determined, and these concentrations were used to compare the VAMS method (whole blood) with the conventional method (serum). In addition, the recovery was examined as well as the impact of haematocrit. Finally, AED-spiked blood was used to test the stability of the AEDs inside the micro-sampler devices over a period of time and whether temperature had an effect on the stability.ResultsVAMS allows for an accurate detection of 16 different AEDs within 2 days after sampling. Deviation in recovery was less than 10% and high correlations were found between VAMS and conventional sampling. Moreover, haematocrit does not have an effect with values between 0.3 and 0.5 (L/L). Finally, although storage temperature of VAMS does affect some AEDs, most are unaffected.ConclusionsVAMS enables an accurate detection of a wide variety of AEDs within 2 days after sampling.


Author(s):  
Helmuth Haslacher ◽  
Thomas Szekeres ◽  
Marlene Gerner ◽  
Elisabeth Ponweiser ◽  
Manuela Repl ◽  
...  

AbstractBackground:Irreproducibility of scientific results constitutes an undesirably onerous economic burden and is in many cases caused by low-quality materials. Therefore, researchers are increasingly devoting their attention to the bioresources they use. In turn, those bioresources are required to validate their preanalytical processes in order to ensure best possible quality. The present study thus aimed to evaluate the impact of repeated temperature fluctuations, as they occur in most research biobanks due to repetitive opening and closing of freezer doors, on the stability of 26 biochemical analytes.Methods:Serum of 43 individuals was randomly assigned to a fluctuation (n=21) and a control group (n=22). Serum of the fluctuation group underwent controlled temperature fluctuations (30 fluctuations <−75°C – <−65°C – <−75°C under real-life freezer conditions within 21 days). Control sera were stored at constant conditions. After 10, 20, and 30 fluctuations, results derived from the fluctuation group were compared to baseline and to the control group by means of general linear models.Results:Sixteen biomarkers showed statistically significant changes over time, whereas only seven of those presented with diagnostically/clinically relevant changes at certain time points (aspartate aminotransferase, amylase, calcium, uric acid, creatinine, inorganic phosphate and total protein). However, there was no difference between the fluctuation and the control group.Conclusions:Some serum analytes are influenced by storage, even at temperatures as low as <−70°C. In contrast, we found no evidence that complex temperature fluctuations produced by storage of and access to biospecimens in biobank freezers generate any additional variability.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2733
Author(s):  
Vanessa Howland ◽  
Maik Klaedtke ◽  
Johanna Ruhnau ◽  
Vishnu M. Dhople ◽  
Hans J. Grabe ◽  
...  

Human donor milk (HDM) provides appropriate nutrition and offers protective functions in preterm infants. The aim of the study is to examine the impact of different storage conditions on the stability of the human breast milk peptidome. HDM was directly frozen at −80 °C or stored at −20 °C (120 h), 4 °C (6 h), or room temperature (RT for 6 or 24 h). The milk peptidome was profiled by mass spectrometry after peptide collection by ultrafiltration. Profiling of the peptidome covered 3587 peptides corresponding to 212 proteins. The variance of the peptidome increased with storage temperature and time and varied for different peptides. The highest impact was observed when samples were stored at RT. Smaller but significant effects were still observed in samples stored at 4 °C, while samples showed highest similarity to those immediately frozen at −80 °C when stored at −20 °C. Peptide structures after storage at RT for 24 h point to the increased activity of thrombin and other proteases cleaving proteins at lysine/arginine. The results point to an ongoing protein degradation/peptide production by milk-derived proteases. They underline the need for immediate freezing of HDM at −20 °C or −80 °C to prevent degradation of peptides and enable reproducible investigation of prospectively collected samples.


2020 ◽  
Vol 44 (8) ◽  
pp. 864-870
Author(s):  
Teresa Huertas ◽  
Carmen Jurado ◽  
Manuel Salguero ◽  
Teresa Soriano ◽  
Joaquin Gamero

Abstract The objective of this study is to evaluate in vitro stability of cocaine compounds, cocaine (COC), benzoylecgonine (BE), ecgonine methyl ester (EME) and benzoylecgonine ethyl ester (EBE), in blood and urine, during post-analysis custody. Stability was evaluated by measuring percent recovery. Parameters evaluated were time of custody (1 year), storage temperature (−20°C and 4°C), influence of preservative (only for blood samples) and pH (only for urine samples). The impact of the temperature is very important in blood samples. At −20°C all compounds demonstrated to be stable, with recoveries higher than 80% after 1 year. In contrast, degradation was observed in the concentration for all four compounds when the samples were maintained at 4°C. In these same conditions, the influence of the preservative was also noticeable and a higher stability was found in samples preserved with NaF. COC and EBE had similar profiles, and both compounds disappeared after 30 days in samples without NaF and after 150 days in samples with NaF added. EME disappeared after 185 days and after 215 days in samples without and with preservative, respectively. BE recoveries, after 365 days of storage, were 68.5% (in samples with NaF) and 3.7% (in samples without NaF). In urine samples, the four compounds were stable in all the studied conditions except when samples were at pH 8 and stored at 4°C where the compounds disappeared (COC and EBE after 75 days of storage and EME after 15 days). The exception was BE, with a recovery of 23% after 1 year of storage. Of the temperatures evaluated, −20°C seems to be optimal for storage to maintain the stability of cocaine and metabolites in biological samples. This can be further enhanced by maintaining a pH of 4 in urine samples and adding a NaF preservative to blood.


Sign in / Sign up

Export Citation Format

Share Document