scholarly journals Climatic Parameters and Outdoor Workers Safety and Health: A Case Study of Sabzevar City (2011-2017)

Author(s):  
Danial Mohammadi ◽  
Mohammad Javad Mohammad Javad

Background: Climate change and global warming present a significant threat to outdoor workers. Climatic parameters change has increased the risk of outdoor workers' safety and health. The objective of this paper was to examine the hypothesis of an association between six years data of climatic parameters and outdoor workers' safety and health. Methods: A variety of approaches have been produced to assess and measure workers' occupational heat exposure and the risk of heat-related disorders. In this study, maximum, mean, and minimum daily temperatures were used in the heat wave models to compare the sensitivity of predictions according to different climatic parameters in the case study of Sabzevar, settled in the north east of Iran, Khorasan Razavi Province. In this perusal, we used a 6-year data (from March 2011 to June 2017) on medical attendance because of outdoor workers disorders and also daily values of different climatically parameters to investigate the hypothesis of an association between heat indices and outdoor workers disorders. Results: Mean temperature in the case study period was 18.95(0.21) °C. The minimum and maximum recorded temperature in the perusal period was -11.2 °C and 45.4 °C, respectively. The highest and lowest number of outdoor workers disorders was observed for the 11th (max daily air temperature > 35°C for ≥ 1 day) and 4th (mean daily air temperature > 99th percentile for ≥ 2 sequential days) definition of the heat wave in 16 definitions (17.75(4.80) and 0, respectively). Conclusion: This study found that extreme temperature was associated with outdoor worker disorders in Sabzevar. Research into the future likelihood, existence and magnitude of safety and health consequences of global warming and climate change represent an important input to national policy debates.

2021 ◽  
Vol 21 (1) ◽  
pp. 301-310
Author(s):  
Jiyu Seo ◽  
Jeongeun Won ◽  
Jeonghyeon Choi ◽  
Okjeong Lee ◽  
Sangdan Kim

Due to global warming, there is an increasing concern regarding persistent and severe heat waves. The maximum daily surface air temperature observations show strong non-stationary features, and the increased intensity and persistence of heat wave events have been observed in many regions. The heat wave persistence day frequency (HPF) curve, which correlates the intensity of a heat wave persistence event for days with return periods, can be a useful tool to analyze the frequency of heat wave events. In this study, non-stationary HPF curves are developed to explain the trend in the increase of the surface air temperature due to climate change, and their uncertainty is analyzed. The non-stationary HPF model can be used in climate change adaptation management such as public health, public safety, and energy management.


2021 ◽  
pp. 1-10
Author(s):  
Kuok Ho Daniel Tang

Climate change has far-reaching impacts not only on the ecosystems but on the astrosphere. Its effects on the astrosphere are multi-tiered from an entire nation down to individuals including the working population. It alters exposure to environmental hazards and the subsequent occupational risks. This review looks into how various aspects of climate change influence occupational safety and health, and provides recommendations for workplace adaptation. This review examines official data and peer-reviewed scholarly articles published in the past 15 to 20 years to draw the impacts and recommendations. It highlights the susceptibility of outdoor workers to heat and humidity caused by global warming and their works often require high physical demand and the wearing of personal protective clothing which exacerbate heat impacts. Excessive heat causes excessive sweating which could lead to dehydration and kidney disease. Mounting heat reduces working capacity and productivity besides increasing respiration rate hence exposure to chemicals through inhalation. Extreme weather events, particularly wildfires resulted from drought and increasing temperature present high occupational risk to firefighters and other outdoor workers in the wildfire zones, exposing them to extreme heat and numerous air pollutants. Global warming has been linked to increased lightning strikes and more severe heatwaves threatening workers. Flooding and more intense storms increase the occupational risks of those working on sea and in coastal areas. Climate change also alters the distribution and prevalence of disease vectors, creating new occupational risk. Adaptations should take into consideration climate change and workers’ protection in building designs, coastline protection and adaptive response. Keywords: Adaptation; Climate change; Extreme weather; Heat; Safety and health; Workplace


2012 ◽  
Vol 16 (2) ◽  
pp. 179-195
Author(s):  
Almut Beringer ◽  
Steven Douglas

Global climate change and its impacts have ethical dimensions, for instance carbon footprint equity concerns. World issues, including the state of the ecosphere and biodiver­sity, regularly see political leaders, NGOs, business representatives, religious/spiritual orga­nizations, academics, and others engage in international aviation-dependent meetings to address critical challenges facing humanity and the planet. Yet, climate scientists and advocates call for an 80% reduction in greenhouse gas (GHG) emissions by 2050 to cap the increase in global temperatures to 2ºC. Aviation emissions resulting from international meetings raise questions that are not silenced by GHG emissions offsetting. The era of climate change and ‘peak oil’ poses ethical challenges for holding international in-person religious and academic events, especially when the events propound an environmentalist concern and when aviation use is assumed. This paper raises ques­tions regarding the ecological impacts of large international events and focuses the ‘inconvenient truths’ associated with international aviation in the era of global warming. The Parliament of the World’s Religions, the largest multifaith gathering in the world, serves as a case study. The paper emphasizes the view that faith-based/faith-inspired organizations have a special responsibility for leadership in policy and praxis on the moral imperatives of sustainability, sustainable development and climate justice.


2019 ◽  
Vol 2 (3) ◽  
Author(s):  
Bezon Kumar ◽  
Arif Ibne Asad ◽  
Purnima Banik

This paper mainly investigates the perception and knowledge on climate change of the university students in Bangladesh. To carry out this study, primary data are collected from 370 students and uses several statistical methods. Perception and knowledge on the causes, effects and mitigation ways of climate change problems, and perceived duties to combat against climate change are analyzed with descriptive statistics. This paper finds that deforestation is the main cause of global warming and climate change and, the effects of climate change is very serious on people’s health. Majority portion of the students think that it is difficult to combat against climate change problem because it has already been too late to take action. Besides this study also finds that government is crucially responsible for combating against climate change problem. The study calls for government mainly besides industry and youths to aware people about the causes, effects, mitigation ways of climate change so that they can contribute to the sustainable development by mitigating climate change problem.


Author(s):  
Charlotte Villiers ◽  
Georgina Tsagas

The chapter considers whether company law and corporate governance-related initiatives provide effective mechanisms for holding corporations to account for their contribution to climate change. A key regulatory device targeted at corporations is disclosure, the goal of which, in this context, is to achieve greater transparency regarding the risks and opportunities connected to climate change. The chapter explores to what extent climate change-related reporting contributes to the efforts towards reducing global warming. It is argued that there are a number of significant problems with climate-related reporting in its current state, in so far as there are many different requirements, including standards, codes, guidelines, at industry or sector level as well as at national and international levels; all these combined create a chaotic reporting landscape. Moreover, there is no meaningful link between the disclosures required under company law and initiatives within the area of environmental protection; hence it becomes difficult to identify clearly what the key reporting information is and what the responses and possible legal consequences of any such disclosures should be. Consequently, corporations’ accountability for their contribution to climate change is open to question.


2020 ◽  
Vol 12 (19) ◽  
pp. 8123
Author(s):  
Jingming Qian ◽  
Shujiang Miao ◽  
Nigel Tapper ◽  
Jianguang Xie ◽  
Greg Ingleton

Extreme summertime heat is becoming a major issue for aircraft operations. As global temperatures continue to rise, some of the heaviest planes on the longest flights may eventually be unable to depart during the hottest part of summer days. During summer days, some airports have to reduce the payload of aircraft, including cargo and/or passengers in the hotter days of summer. Nonetheless, there is no existing body of research on the potential for airport cooling. Furthermore, extreme heat on the ground also affects airport workers; loading and unloading luggage and servicing platforms between flights could become more arduous. With global warming proceeding, it is becoming increasingly urgent to find a suitable strategy to cool airport environments, perhaps by irrigation of a vegetated landscape. All airports have large enclosed areas (usually of grass) acting as a buffer between airport activities and the adjacent industrial, commercial and residential land utilization. This paper describes the trial of irrigating the buffer area of Adelaide airport and analyzes the performance of irrigation cooling for Adelaide airport, examining whether this can benefit human thermal comfort. Results indicate that irrigation provides cooling, and the cooling effect reduces along with the increasing instance from the middle of the irrigation area. At 15:00, the average air temperature was 1.8 °C cooler in the middle of the irrigation area than in the non-irrigation area, and the relative humidity was 5.8% higher during the trial period. On an extremely hot day (the maximum air temperature was 45.4 °C), it was 1.5 °C cooler in the middle of the irrigation area than upwind the of irrigation area, and 0.8 °C cooler than downwind of the irrigation area at 13:00. Human thermal comfort (HTC) is unfavorable in the runway, but greater improvements can be made through promotion of irrigation.


2020 ◽  
Author(s):  
Paul Hamer ◽  
Heidelinde Trimmel ◽  
Philipp Weihs ◽  
Stéphanie Faroux ◽  
Herbert Formayer ◽  
...  

<p>Climate change threatens to exacerbate existing problems in urban areas arising from the urban heat island. Furthermore, expansion of urban areas and rising urban populations will increase the numbers of people exposed to hazards in these vulnerable areas. We therefore urgently need study of these environments and in-depth assessment of potential climate adaptation measures.</p><p>We present a study of heat wave impacts across the urban landscape of Vienna for different future development pathways and for both present and future climatic conditions. We have created two different urban development scenarios that estimate potential urban sprawl and optimized development concerning future building construction in Vienna and have built a digital representation of each within the Town Energy Balance (TEB) urban surface model. In addition, we select two heat waves of similar frequency of return representative for present and future conditions (following the RCP8.5 scenario) of the mid 21<sup>st</sup> century and use the Weather Research and Forecasting Model (WRF) to simulate both heat wave events. We then couple the two representations urban Vienna in TEB with the WRF heat wave simulations to estimate air temperature, surface temperatures and human thermal comfort during the heat waves. We then identify and apply a set of adaptation measures within TEB to try to identify potential solutions to the problems associated with the urban heat island.</p><p>Global and regional climate change under the RCP8.5 scenario causes the future heat wave to be more severe showing an increase of daily maximum air temperature in Vienna by 7 K; the daily minimum air temperature will increase by 2-4 K. We find that changes caused by urban growth or densification mainly affect air temperature and human thermal comfort local to where new urbanisation takes place and does not occur significantly in the existing central districts.</p><p>Exploring adaptation solutions, we find that a combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaption measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K.  Therefore, additional adaptation to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures.</p><p>This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required.</p><p>We are now actively seeking to apply this set of tools to a wider set of cases in order to try to find effective solutions to projected warming resulting from climate change in urban areas.</p>


Author(s):  
L.V. Malytska ◽  
V. O Balabukh

In Ukraine, as in the world, substantial climatic changes have happened throughout past decades. It is a fact that they are manifested in changing of parameters of the thermal regime, regimes of wind and humidity. It is expected that they will be observed also in future that will lead to aggravation of negative effects and risks due to climate change. That determines the relevance of the problem of forecasting such changes in future both globally and regionally. After all, knowledge of climate’s behavior in future is very important in the development of strategies, program and measures to adapt to climate change. The article is devoted to assessing spatio-temporal distribution main climatic indicators (air temperature, wind speed and relative humidity) in Ukraine, their variability and the probable values to the middle of the 21st century (2021-2050). Projection of changes in meteorological conditions was made for A1B scenario of SRES family using data of the regional climate model REMO and data from the hydrometeorological observation network of Ukraine (175 stations). Estimated data obtained from the European FP-6 ENSEMBLES project with a resolution of 25 km. For spatial distribution (mapping) we used open-source Geographic Information System QGIS, type of geographic coordinate system for project is WGS84. In the middle of the XXI century, if A1B scenario is released, it is expected a significant changes of climatic parameters regarding the 1981-2010 climatic norm: air temperature is rise by 1,5 °C, average wind speed is decrease by 5-8%, relative humidity in winter probably drop by 2%, but in summer it rises by 1,5%. The unidirectionality of the changes is characteristic only of air temperature, for wind speed and relative humidity the changes are in different directions. The intensity of changes is also not uniform across the country for all climatic parameters, has its regional and seasonal features. Statistical likelihood for most of highlighted changes for all climatic parameters is 66 % and more, the air temperature change is virtually certain (p-level <0.001).


2017 ◽  
Vol 16 (05) ◽  
pp. A01 ◽  
Author(s):  
Sara K. Yeo ◽  
Zachary Handlos ◽  
Alexandra Karambelas ◽  
Leona Yi-Fan Su ◽  
Kathleen M. Rose ◽  
...  

Research suggests non-experts associate different content with the terms “global warming” and “climate change.” We test this claim with Twitter content using supervised learning software to categorize tweets by topic and explore differences between content using “global warming” and “climate change” between 1 January 2012 and 31 March 2014. Twitter data were combined with temperature records to observe the extent to which temperature was associated with Twitter discussions. We then used two case studies to examine the relationship between extreme temperature events and Twitter content. Our findings underscore the importance of considering climate change communication on social media.


2011 ◽  
Vol 91 (2) ◽  
pp. 51-70
Author(s):  
Vladan Ducic ◽  
Dragan Buric ◽  
Jelena Lukovic ◽  
Gorica Stanojevic

The global warming and climate change are the actual and challenging topics. Recently there is one question, frequently asked: whether today's climate is changing? The studies of this issues are mainly related to the two the most important climatic elements - air temperature and precipitation amounts. We have done research about temperature variability for Montenegro and the main aim of this paper is analysis precipitation changes for station Podgorica (Montenegro) in the period of sistematic observation - are there changes, to what extent and whether they are significant. According to the results, acumulated precipitation do not show significant changes for annual and seasonal values in the period 1951-2010. The interannual variations of the precipitation (which are characterictic for this climate element) do not show increases in recent times. The component trend shows some changes, but statisticaly insignigficant. The previous results for precipitation conditions in Podgorica are not in accordance with the concept of Intergovermental Panel on Climate Change (IPCC) which predicted a general decerease in precipitation and increase variability on this area.


Sign in / Sign up

Export Citation Format

Share Document