scholarly journals Distribution of Stromal Cell Subsets in Cultures from Distinct Ocular Surface Compartments

Author(s):  
Lei Liu ◽  
Ying Yu ◽  
Qiuyue Peng ◽  
Simone R Porsborg ◽  
Frederik M Nielsen ◽  
...  

Purpose: To reveal the phenotypic differences between human ocular surface stromal cells (hOSSCs) cultured from the corneal, limbal, and scleral compartments. Methods: A comparative analysis of cultured hOSSCs derived from four unrelated donors was conducted by multichromatic flow cytometry for six distinct CD antigens, including the CD73, CD90, CD105, CD166, CD146, and CD34. Results: The hOSSCs, as well as the reference cells, displayed phenotypical profiles that were similar in high expression of the hallmark mesenchymal stem cell markers CD73, CD90, and CD105, and also the cancer stem cell marker CD166. Notably, there was considerable variation regarding the expression of CD34, where the highest levels were found in the corneal and scleral compartments. The multi-differentiation potential marker CD146 was also expressed highly variably, ranging from 9% to 89%, but the limbal stromal and endometrial mesenchymal stem cells significantly surpassed their counterparts within the ocular and reference groups, respectively. The use of six markers enabled investigation of 64 possible variants, however, just four variants accounted for almost 90% of all hOSSCs, with the co-expression of CD73, CD90, CD105, and CD166 and a combination of CD146 and CD34. The limbal compartment appeared unique in that it displayed greatest immunophenotype diversity and harbored the highest proportion of the CD146+CD34- pericyte-like forms, but, interestingly, the pericyte-like cells were also found in the avascular cornea. Conclusions: Our findings confirm that the hOSSCs exhibit an immunophenotype consistent with that of MSCs, further highlight the phenotypical heterogeneity in stroma from distinct ocular surface compartments, and finally underscore the uniqueness of the limbal region. 

2011 ◽  
Author(s):  
Moon Nian Lim ◽  
Umapathy Thiageswari ◽  
Othman Ainoon ◽  
P. J. N. Baharuddin ◽  
R. A. Jamal ◽  
...  

2008 ◽  
Vol 8 ◽  
pp. 1168-1176 ◽  
Author(s):  
Laren Becker ◽  
Qin Huang ◽  
Hiroshi Mashimo

Lgr5 has recently been identified as a murine marker of intestinal stem cells. Its expression has not been well characterized in human gastrointestinal tissues, but has been reported in certain cancers. With the increasing appreciation for the role of cancer stem cells or tumor-initiating cells in certain tumors, we sought to explore the expression of Lgr5 in normal and premalignant human gastrointestinal tissues. Using standard immunostaining, we compared expression of Lgr5 in normal colon and small intestine vs. small intestinal and colonic adenomas and Barrett's esophagus. In the normal tissue, Lgr5 was expressed in the expected stem cell niche, at the base of crypts, as seen in mice. However, in premalignant lesions, Lgr5+cells were not restricted to the crypt base. Additionally, their overall numbers were increased. In colonic adenomas, Lgr5+cells were commonly found clustered at the luminal surface and rarely at the crypt base. Finally, we compared immunostaining of Lgr5 with that of CD133, a previously characterized marker for tumor-initiating cells in colon cancer, and found that they identified distinct subpopulations of cells that were in close proximity, but did not costain. Our findings suggest that (1) Lgr5 is a potential marker of intestinal stem cells in humans and (2) loss of restriction to the stem cell niche is an early event in the premalignant transformation of stem cells and may play a role in carcinogenesis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Albert Spicher ◽  
Andrea Meinhardt ◽  
Marc-Estienne Roehrich ◽  
Giuseppe Vassalli

Identification of stem cells based on hematopoietic stem cell (HSC) surface markers, such as stem cell antigen-1 (Sca-1) and the c-kit receptor, has limited specificity. High aldehyde-dehydrogenase (ALDH) activity is a general cellular property of stem cells shared by HSC, neural, and intestinal stem cells. The presence of cells with high ALDH activity in the adult heart has not been investigated. Methods: Cells were isolated from adult mouse hearts, and from atrial appendage samples from humans with ischemic or valvular heart disease. Myocyte-depleted mouse Sca-1+, and lineage (Lin)-negative/c-kit+ human heart cells were purified with immunomagnetic beads. ALDH-high cells were identified using a specific fluorescent substrate, and sorted by FACS. Cell surface marker analysis was performed by flow cytometry. Results: Myocyte-depleted mouse heart cells contained 4.8+/−3.2% ALDH-high/SSC-low and 32.6+/−1.6% Sca-1+ cells. ALDH-high cells were Lin-negative, Sca-1+ CD34+ CD105+ CD106+, contained small CD44+ (27%) and CD45+ (15%) subpopulations, and were essentially negative for c-kit (2%), CD29, CD31, CD133 and Flk-1. After several passages in culture, ~20% of ALDH-high cells remained ALDH-high. Myocyte-depleted human atrial cells contained variable numbers of ALDH-high cells ranging from 0.5% to 11%, and 4% Lin-negative/c-kit+ cells. ALDH-high cells were CD29+ CD105+, contained a small c-kit+ subpopulation (5%), and were negative for CD31, CD45 and CD133. After 5 passages in culture, the majority of ALDH-high cells remained ALDH-high. Conclusions: Adult mouse and human hearts contain significant numbers of cells with high ALDH activity, a general cellular property that stem cells possess in different organs, and express stem cell markers (Sca-1 and CD34 in the mouse). The immunophenotype of cardiac-resident ALDH-high cells differs from that previously described for bone marrow ALDH-high HSC, and suggests that this cell population may be enriched in mesenchymal progenitors. Analysis of lineage differentiation potential of ALDH-high cells is in progress. ALDH activity provides a new, practical approach to purifying cardiac-resident progenitor cells.


Gene ◽  
2013 ◽  
Vol 525 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Chen Wu ◽  
Yuanyuan Xie ◽  
Feng Gao ◽  
Yanan Wang ◽  
Yawei Guo ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1485 ◽  
Author(s):  
Murielle Rémy ◽  
Francesca Ferraro ◽  
Pierre Le Salver ◽  
Sylvie Rey ◽  
Elisabeth Genot ◽  
...  

Stem cells isolated from the apical papilla of wisdom teeth (SCAPs) are an attractive model for tissue repair due to their availability, high proliferation rate and potential to differentiate in vitro towards mesodermal and neurogenic lineages. Adult stem cells, such as SCAPs, develop in stem cell niches in which the oxygen concentration [O2] is low (3–8% compared with 21% of ambient air). In this work, we evaluate the impact of low [O2] on the physiology of SCAPs isolated and processed in parallel at 21% or 3% O2 without any hyperoxic shock in ambient air during the experiment performed at 3% O2. We demonstrate that SCAPs display a higher proliferation capacity at 3% O2 than in ambient air with elevated expression levels of two cell surface antigens: the alpha-6 integrin subunit (CD49f) and the embryonic stem cell marker (SSEA4). We show that the mesodermal differentiation potential of SCAPs is conserved at early passage in both [O2], but is partly lost at late passage and low [O2], conditions in which SCAPs proliferate efficiently without any sign of apoptosis. Unexpectedly, we show that autophagic flux is active in SCAPs irrespective of [O2] and that this process remains high in cells even after prolonged exposure to 3% O2.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3654
Author(s):  
Rebecca Pötschke ◽  
Jacob Haase ◽  
Markus Glaß ◽  
Sebastian Simmermacher ◽  
Claudia Misiak ◽  
...  

The stem cell marker Musashi1 (MSI1) is highly expressed during neurogenesis and in glioblastoma (GBM). MSI1 promotes self-renewal and impairs differentiation in cancer and non-malignant progenitor cells. However, a comprehensive understanding of its role in promoting GBM-driving networks remains to be deciphered. We demonstrate that MSI1 is highly expressed in GBM recurrences, an oncologist’s major defiance. For the first time, we provide evidence that MSI1 promotes the expression of stem cell markers like CD44, co-expressed with MSI1 within recurrence-promoting cells at the migrating front of primary GBM samples. With GBM cell models of pediatric and adult origin, including isolated primary tumorspheres, we show that MSI1 promotes stem cell-like characteristics. Importantly, it impairs CD44 downregulation in a 3′UTR- and miRNA-dependent manner by controlling mRNA turnover. This regulation is disturbed by the previously reported MSI1 inhibitor luteolin, providing further evidence for a therapeutic target potential of MSI1 in GBM treatment.


2011 ◽  
Vol 211 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Michael G White ◽  
Hussain R Al-Turaifi ◽  
Graham N Holliman ◽  
Ali Aldibbiat ◽  
Aiman Mahmoud ◽  
...  

The source of new β-cells in adult human pancreas remains incompletely elucidated with recent studies on rodents providing evidence for neogenesis from progenitor cells in addition to self-replication. The aim of this study was to investigate the expression of pluripotency-associated stem cell markers in proliferative cultures derived from adult human pancreas. Human pancreatic tissue was obtained from deceased donors following ethical approval and relative consent. Islet-enriched fraction was separated from the retrieved organ by digestion and density gradient centrifugation. Dissociated cells were seeded in adherent culture forming proliferative ‘islet survivor cells’ (ISCs). These were characterised at fifth passage by RT-PCR, immunofluorescence staining, FACS, western blot and transfection studies with an OCT4 promoter-driven reporter. Nuclear expression of the pluripotency-associated stem cell marker complex OCT4/SOX2/NANOG was confirmed in ISCs. The phenotype constituted ∼8% of the overall population. OCT4 biosynthesis was confirmed by western blot and activation of an exogenous OCT4 promoter. Co-expression of pluripotency-associated markers has been confirmed in proliferative primary cells derived from adult human pancreas. Further studies are required to elucidate whether these cells possess functional stem cell characteristics and assess potential for differentiation into pancreatic cell lineages including new β-cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1677-1677
Author(s):  
Toska J. Zomorodian ◽  
Debbie Greer ◽  
Kyle Wood ◽  
Bethany Foster ◽  
Delia Demers ◽  
...  

Abstract Transplanted bone marrow donor cells with tissue specific phenotypes have been found in the brain, liver, heart, skin, lung, kidney, and gut of transplanted humans and mice. Such observations have led to the controversial hypothesis that hematopoietic stem cells (HSC) might be intrinsically plastic, and through transdifferentiation or fusion lead to the repair of damaged tissues throughout the body. Alternately, it is suggested that fusion of macrophages to the recipient cells may explain this phenomenon. We have shown recently that purified HSC are the cells responsible for GFP positive donor-derived muscle fibers in the recipient mice post bone marrow transplantation. However, further studies sorting for macrophage markers Mac-1 and F4/80 also resulted in donor-derived muscle fibers in the host. To address this discrepancy, we investigated subpopulations of Mac-1 and F4/80 positive cells, in the presence or absence of stem cell markers (Sca-1 and C-kit). We demonstrate that only the subpopulations of Mac-1 and F4/80 positive cells harboring stem cell markers, Sca-1 or c-kit, were capable of contributing to the regenerating muscle post transplantation. Furthermore, these same subpopulations demonstrated single cell High Proliferative Potential (HPP) (6–26%) in a 7 factor cytokine cocktail, compared to the Mac-1 or F4/80 cells with no stem cell markers (0%). Additionally, they demonstrated long-term engraftment in all three lineages at 1-year (average chimerism of 55% versus 0% in stem cell marker negative groups). These subpopulations were also evaluated for morphology using Hematoxylin/Eosin (H/E), Wright-Giemsa, and Nonspecific Esterase staining. In the Mac-1 and F4/80 positive groups, those negative for stem cell markers resembled differentiated cells of the myeloid origin (macrophages, granulocytes), while those with positive stem cell markers demonstrated stem cell characteristics. We did not observe any engraftability, donor-derived muscle fibers, or HPP potential for CD14 or cfms positive cells coexpressing stem cell markers, indicating that these markers are more appropriate for identifying macrophages. In conclusion, our studies demonstrate that both Mac-1 and F4/80 surface markers are present on HSC and therefore caution must be taken in the interpretation of data using these macrophage markers. It is reasonable to believe that the use of Mac-1 and/or F4/80 surface markers in a lineage depletion process may result in the loss of a subpopulation of stem cells, and other markers such as CD14 or c-fms may be more appropriate for eliminating differentiated macrophages.


2013 ◽  
Vol 305 (9) ◽  
pp. H1354-H1362 ◽  
Author(s):  
Koichi Igura ◽  
Motoi Okada ◽  
Ha Won Kim ◽  
Muhammad Ashraf

Stem cell-mediated cardiac regeneration is impaired with age. In this study, we identified a novel subpopulation of small juvenile stem cells (SJSCs) isolated from aged bone marrow-derived stem cells (BMSCs) with high proliferation and differentiation potential. SJSCs expressed mesenchymal stem cell markers, CD29+/CD44+/CD59+/CD90+, but were negative for CD45−/CD117− as examined by flow cytometry analysis. SJSCs showed higher proliferation, colony formation, and differentiation abilities compared with BMSCs. We also observed that SJSCs significantly expressed cardiac lineage markers (Gata-4 and myocyte-specific enhancer factor 2C) and pluripotency markers (octamer-binding transcription factor 4, sex-determining region Y box 2, stage-specific embryonic antigen 1, and Nanog) as well as antiaging factors such as telomerase reverse transcriptase and sirtuin 1. Interestingly, SJSCs either from young or aged animals showed significantly longer telomere length as well as lower senescence-associated β-galactosidase expression, suggesting that SJSCs possess antiaging properties, whereas aged BMSCs have limited potential for proliferation and differentiation. Furthermore, transplantation of aged SJSCs into the infarcted rat heart significantly reduced the infarction size and improved left ventricular function, whereas transplantation of aged BMSCs was less effective. Moreover, neovascularization as well as cardiomyogenic differentiation in the peri-infarcted area were significantly increased in the SJSC-transplanted group compared with the BMSC-transplated group, as evaluated by immunohistochemical analysis. Taken together, these findings demonstrate that SJSCs possess characteristics of antiaging, pluripotency, and high proliferation and differentiation rates, and, therefore, these cells offer great therapeutic potential for repair of the injured myocardium.


Sign in / Sign up

Export Citation Format

Share Document