OSTEOIMMUNOLOGICAL IMPLICATIONS IN REGENERATIVE MEDICINE: CROSS-TALK BETWEEN MESENCHYMAL STEM CELLS AND IMMUNE CELLS

2021 ◽  
pp. 2140001
Author(s):  
Alden Davis ◽  
Robert E. Guldberg ◽  
Rebekah M. Samsonraj

Bone fractures are one of the most common orthopedic cases, yet strategies to resolve excessive inflammation and non-unions still lack satisfactory treatment methods owing to the complex fracture microenvironment, as well as the interactions between the plethora of cell types involved. Fracture is a highly inflammatory process which involves the recruitment of various immune cells which in turn release various cytokines and growth factors to perpetuate inflammation and eventually healing resolution. Osteoimmunology is an interdisciplinary field investigating the extensive interactions between the immune system and skeletal system. Mesenchymal stem cells (MSCs) are resident in almost every adult tissue and are responsible for initiating reparative cascades in the event of injury. A key aspect of MSCs is their role as trophic mediators, secreting a milieu of signaling as well as immunomodulatory cytokines that play important roles in tissue regeneration. This paracrine signaling polarizes macrophages into their anti-inflammatory M2 phenotype, activates osteoblasts, inhibits osteoclasts, as well as suppresses conventional T cell proliferation and promotes regulatory T cell (Treg) proliferation. MSCs have been shown to resolve inflammation whilst also supporting osteogenesis; for these reasons, they are considered promising candidates for cellular therapies to treat musculoskeletal pathologies. Through pretreatment and genetic modifications, MSCs can be predisposed to release specific molecules that can modulate the microenvironment and regulate the activity of the immune system towards enhancing bone repair. By understanding the cross-talk between MSCs and the immune system in bone physiology, more targeted therapies directed towards specific cells and discrete signaling molecules become possible that may allow for expedited healing and improved standard of care in orthopedics. In this review, we discuss the interplay between immune cells and MSCs and the potential ways to harness this cross-talk to improve regenerative medicine strategies.

2019 ◽  
Vol 20 (21) ◽  
pp. 5467 ◽  
Author(s):  
Dalia Medhat ◽  
Clara I. Rodríguez ◽  
Arantza Infante

Mesenchymal stem cells (MSCs) are capable of differentiating into multilineage cells, thus making them a significant prospect as a cell source for regenerative therapy; however, the differentiation capacity of MSCs into osteoblasts seems to not be the main mechanism responsible for the benefits associated with human mesenchymal stem cells hMSCs when used in cell therapy approaches. The process of bone fracture restoration starts with an instant inflammatory reaction, as the innate immune system responds with cytokines that enhance and activate many cell types, including MSCs, at the site of the injury. In this review, we address the influence of MSCs on the immune system in fracture repair and osteogenesis. This paradigm offers a means of distinguishing target bone diseases to be treated with MSC therapy to enhance bone repair by targeting the crosstalk between MSCs and the immune system.


2017 ◽  
Vol 204 (2) ◽  
pp. 59-83 ◽  
Author(s):  
Ahmad Oryan ◽  
Amir Kamali ◽  
Ali Moshiri ◽  
Mohamadreza Baghaban Eslaminejad

Healing and regeneration of bone injuries, particularly those that are associated with large bone defects, are a complicated process. There is growing interest in the application of osteoinductive and osteogenic growth factors and mesenchymal stem cells (MSCs) in order to significantly improve bone repair and regeneration. MSCs are multipotent stromal stem cells that can be harvested from many different sources and differentiated into a variety of cell types, such as preosteogenic chondroblasts and osteoblasts. The effectiveness of MSC therapy is dependent on several factors, including the differentiating state of the MSCs at the time of application, the method of their delivery, the concentration of MSCs per injection, the vehicle used, and the nature and extent of injury, for example. Tissue engineering and regenerative medicine, together with genetic engineering and gene therapy, are advanced options that may have the potential to improve the outcome of cell therapy. Although several in vitro and in vivo investigations have suggested the potential roles of MSCs in bone repair and regeneration, the mechanism of MSC therapy in bone repair has not been fully elucidated, the efficacy of MSC therapy has not been strongly proven in clinical trials, and several controversies exist, making it difficult to draw conclusions from the results. In this review, we update the recent advances in the mechanisms of MSC action and the delivery approaches in bone regenerative medicine. We will also review the most recent clinical trials to find out how MSCs may be beneficial for treating bone defects.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


2020 ◽  
Vol 28 (1) ◽  
pp. 283-302
Author(s):  
Dandan Zhang ◽  
Ni Ni ◽  
Yuyao Wang ◽  
Zhimin Tang ◽  
Huiqin Gao ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.


Author(s):  
Seyed Mehdi Hoseini ◽  
Maryam Moghaddam-Matin ◽  
Ahmad Reza Bahrami ◽  
Fateme Montazeri ◽  
Seyed Mehdi Kalantar

Introduction: Amniotic fluid contains a mixture of different cell types sloughed from the fetal skin, respiratory, alimentary and urogenital tracts, as well as the amnion membrane. As amniotic fluid develops prior to the process of gastrulation, many cells found in its heterogeneous population do not undergo lineage specialization. Therefore, amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may correspond to a new class of stem cells with properties of intermediate plasticity between pluripotent and adult stem cell types. Compared to mesenchymal stem cells (MSCs) from other sources, such as bone marrow, AF-MSCs have better properties for clinical applications, such as differentiation into the cells of three germ layers, high clonal capacity, ability to form embryoid bodies, expression of pluripotent markers, high self-renewal capacity (over 250 population doublings) with normal karyotype at late passages, long telomere length due to continued telomerase activity, specially non-tumorigenicity, low immunogenicity, anti-inflammatory and immunomodulatory properties. Conclusion: Such features have nominated AF-MSC for a range of clinical applications, including in regenerative medicine. In several studies, these cells have been used to regenerate nerve, lung, and heart tissues. Overall, AF-MSCs are expected to be an ideal source of stem cells for future regenerative medicine and tissue engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Takahiro Teshima ◽  
Akito Matsuoka ◽  
Maika Shiba ◽  
Kazuho Dairaku ◽  
Hirotaka Matsumoto ◽  
...  

Adipose-derived mesenchymal stem cells (ADSCs) have been suggested their benefits in regenerative medicine for various diseases. Lipomas, benign neoplasms in adipose tissue, have been reported as a potential source of stem cells. These lipoma-derived mesenchymal stem cells (LDSCs) may be useful for regenerative medicine. However, the detailed characteristics of LDSCs have not been fully elucidated. This study investigated the cellular proteomics and secretomes of canine LDSCs in addition to morphology and proliferation and differentiation capacities. Some LDSCs isolated from canine subcutaneous lipomas were morphologically different from ADSCs and showed a rounded shape instead of fibroblast-like morphology. The phenotype of cell surface markers in LDSCs was similar to those in ADSCs, but CD29 and CD90 stem cell markers were more highly expressed compared with those of ADSCs. LDSCs had noticeably high proliferation ability, but no significant differences were observed compared with ADSCs. In regard to differentiation capacity compared to ADSCs, LDSCs showed higher adipogenesis, but no differences were observed with osteogenesis. Cellular proteomic analysis using two-dimensional gel electrophoresis revealed that over 95% of protein spots showed similar expression levels between LDSCs and ADSCs. Secretome analysis was performed using iTRAQ and quantitative cytokine arrays. Over 1900 proteins were detected in conditioned medium (CM) of LDSCs and ADSCs, and 94.0% of detected proteins showed similar expression levels between CM of both cell types. Results from cytokine arrays including 20 cytokines showed no significant differences between CM of LDSCs and that of ADSCs. Our results indicate that canine LDSCs had variability in characteristics among individuals in contrast with those of ADSCs. Cellular proteomics and secretomes were similar in both LDSCs and ADSCs. These findings suggest that LDSCs may be suitable for application in regenerative medicine.


2016 ◽  
Vol 12 ◽  
pp. 38-47 ◽  
Author(s):  
Aleksandra Skubis ◽  
Bartosz Sikora ◽  
Nikola Zmarzły ◽  
Emilia Wojdas ◽  
Urszula Mazurek

This review article provides an overview on adipose-derived stem cells (ADSCs) for implications in bone tissue regeneration. Firstly this article focuses on mesenchymal stem cells (MSCs) which are object of interest in regenerative medicine. Stem cells have unlimited potential for self-renewal and develop into various cell types. They are used for many therapies such as bone tissue regeneration. Adipose tissue is one of the main sources of mesenchymal stem cells (MSCs). Regenerative medicine intends to differentiate ADSC along specific lineage pathways to effect repair of damaged or failing organs. For further clinical applications it is necessary to understand mechanisms involved in ADSCs proliferation and differentiation. Second part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.


2012 ◽  
Vol 84 (3) ◽  
pp. 841-851 ◽  
Author(s):  
Betânia S. Monteiro ◽  
Napoleão M. Argôlo-Neto ◽  
Nance B. Nardi ◽  
Pedro C. Chagastelles ◽  
Pablo H. Carvalho ◽  
...  

Mesenchymal stem cells (MSC) are present in specialized niches in perivascular regions of adult tissues and are able to differentiate into various cell types, such as those committed to repairing. Bone marrow derived MSC from eight young mice C57BL/ 6 gfp+ were expanded in culture for repairing critical defects in calvarial bone produced in twenty-four young isogenic adult C57BL/6 mice. The animals were subjected to a cranial defect of 6.0mm diameter and divided into two equal experimental groups. Control group did not receive any treatment and the treated group received a MSC pellet containing 1.0 x 10(7) cells/mL into the defects. The group treated with MSC showed increased angiogenesis and amount of new bone deposited on the defect limits than that observed in the control group. The results demonstrated that transplantation of bone marrow-derived MSC of C57BL/6 gfp+ mice to bone critical defects produced in mice calvarial contributes positively to the bone repair process. MSC presets ability to influence the correct functioning of osteoblasts, increases the amount of mobilized cells for the repairing process, speeds up growth, and increases deposition of bone matrix.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jared Becerril-Rico ◽  
Eduardo Alvarado-Ortiz ◽  
Mariel E. Toledo-Guzmán ◽  
Rosana Pelayo ◽  
Elizabeth Ortiz-Sánchez

AbstractCross talk between cancer cells and the immune system is determinant for cancer progression. Emerging evidence demonstrates that GC characteristics such as metastasis, treatment resistance, and disease recurrence are associated with a tumor subpopulation called gastric cancer stem cells (GCSCs). However, the specific interaction between GCSCs and the immune microenvironment is still under investigation. Although immune evasion has been well described for cancer stem cells (CSCs), recent studies show that GCSCs can also regulate the immune system and even benefit from it. This review will provide an overview of bidirectional interactions between CSCs and immune cells in GC, compiling relevant data about how CSCs can induce leukocyte reprogramming, resulting in pro-tumoral immune cells that orchestrate promotion of metastasis, chemoresistance, tumorigenicity, and even increase in number of cancer cells with stem properties. Some immune cells studied are tumor-associated macrophages (TAMs), neutrophils, Th17 and T regulatory (Treg) cells, mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs), as well as the signaling pathways involved in these pro-tumoral activities. Conversely, although there are cytotoxic leukocytes that can potentially eliminate GCSCs, we describe mechanisms for immune evasion in GCSCs and their clinical implications. Furthermore, we describe current available immunotherapy targeting GCSC-related markers as possible treatment for GC, discussing how the CSC-modified immune microenvironment can mitigate or inactivate these immunotherapies, limiting their effectiveness. Finally, we summarize key concepts and relevant evidence to understand the cross talk between GCSCs and the immune microenvironment as an important process for effective design of therapies against GCSCs that improve the outcome of patients with GC.


2021 ◽  
Author(s):  
Lucile Fievet ◽  
Nicolas Serratrice ◽  
Benedicte Brulin ◽  
Laurent Giraudo ◽  
Julie Veran ◽  
...  

Bone repair induced by stem cells and biomaterials may represent an alternative to autologous bone grafting. Here, we compared the efficiency of two biomaterials - biphasic calcium phosphate (BCP) and bioactive glass (BG) - when loaded with either adult bone marrow mesenchymal stem cells (BM-MSCs) or newborn nasal ecto-mesenchymal stem cells (NE-MSCs), the latter being collected for further repair of lip cleft-associated bone loss. Both cell types display the typical stem cell surface markers CD73+/CD90+/CD105+/nestin, and exhibit the MSC-associated osteogenic, chondrogenic and adipogenic multipotency. NE-MSCs produce less collagen and alkaline phosphatase than BM-MSCs. At the transcript level, NE-MSCs express more abundantly three genes coding for bone sialoprotein, osteocalcin and osteopontin, while BM-MSCs produce extra copies of RUNX2. BM-MSCs and NE-MSCs adhere and survive on BCP and BG. In vivo experiments reveal that bone formation is only observed with BM-MSCs transplanted on BCP biomaterial.


Sign in / Sign up

Export Citation Format

Share Document