scholarly journals Interoperability of Cloud Using Single API

2020 ◽  
Vol 9 (04) ◽  
pp. 25008-25013
Author(s):  
Hari Kumar P. ◽  
Sudharshana J. ◽  
Sunil Kannah M

In the cloud computing model, users access services according to their requirements. Most of the people use cloud since it has low cost, high speed computing, backup and restore, mobility and unlimited flexible storage capacity. Cloud resources are hosted in large datacentres operated by companies such as Amazon, Apple, Google and Microsoft. During cloud application deployment, an application is managed over a single service. Such an approach has several short comings. One side-effect of the lack of interoperability among cloud providers is vendor lock in, which means lack of ability to migrate application components from one cloud provider to another cloud provider. If a user finds some required platforms in new service provider but the user cannot leave the current provider as the resources are present with them. This is known as vendor lock in. To solve this issue in achieving interoperability several efforts are underway. Our project is that a user who creates a unique channel that can be used to gain the services provided by different providers. So that the user can use another vendor’s service which is not present in present vendor’s cloud. That is user can use multiple clouds having different resources using a single API without depending on their own APIs.  

2012 ◽  
Vol 462 ◽  
pp. 456-463
Author(s):  
Bo Wei Zhang ◽  
Guo Chang Gu ◽  
Xing Zhou Zhang ◽  
Dong Liu

The loosely-coupled reconfigurable computing model includes the host microprocessor in conjunction with an external stand-alone reconfigurable hardware which takes advantage of low cost in technology and development time. It can work as a fast emulation approach to study reconfigurable computing prototype system. One of the key features of such emulation system is the ability to perform the communication. In this paper, we proposed a high speed hardware channel with direct memory access(DMA) transaction method based on Xilinx ML555 development kit and PCI-express(peripheral component interconnection express) endpoint block IP. Experiments show that both read and write transaction speed in this design meet the theoretical maximum speed.


Author(s):  
Huỳnh Hoàng Long ◽  
Nguyễn Hữu Đức ◽  
Lê Trọng Vĩnh

Cloud computing has burst into the trend that a cloud application is developed and provided by a specific cloud provider in form of SaaS (Software as a Service). One limitation of this approach is the vendor lock-in problem, in which the consumers of a SaaS are tightly bound to the ecosystem from the cloud provider in both senses of software development environment and computation resource. Toward solving this problem, in this paper, we propose Composable Application Model (CAM) which formalizes a cloud software as a composition of software components, each of them can be independently developed and can be separately deployed on different cloud platform. We show that our prosed model could be useful for verifying correctness of software composition as well as for checking the correct deployment of a software composition on specified cloud platforms. As an illustration, we experimentally transform our proposed application model into TOSCA application template, a standardized specification for creating multi-cloud application.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

2016 ◽  
Vol 30 (06) ◽  
pp. 1650063 ◽  
Author(s):  
Jingwen Sun ◽  
Jian Sun ◽  
Yunji Yi ◽  
Lucheng Qv ◽  
Shiqi Sun ◽  
...  

A low-cost and high-speed electro-optic (EO) switch using the guest–host EO material Disperse Red 1/Polymethyl Methacrylate (DR1/PMMA) was designed and fabricated. The DR1/PMMA material presented a low processing cost, an excellent photostability and a large EO coefficient of 13.1 pm/V. To improve the performance of the switch, the in-plane buried electrode structure was introduced in the polymer Mach–Zehnder waveguide to improve the poling and modulating efficiency. The characteristic parameters of the waveguide and the electrodes were carefully designed and the fabrication process was strictly controlled. Under 1550 nm, the insertion loss of the device was 12.7 dB. The measured switching rise time and fall time of the switch were 50.00 ns and 54.29 ns, respectively.


AJIL Unbound ◽  
2021 ◽  
Vol 115 ◽  
pp. 263-267
Author(s):  
Doron Teichman ◽  
Eyal Zamir

The use of nudges—“low-cost, choice-preserving, behaviorally informed approaches to regulatory problems”—has become quite popular at the national level in the past decade or so. Examples include changing the default concerning employees’ saving for retirement in a bid to encourage such saving; altering the default about consent to posthumous organ donation to increase the supply of organs for transplantation; and informing people about other people's energy consumption to spur them to reduce theirs. Nudges are therefore used to promote the welfare of the people being nudged, and of society at large. However, the use of nudges has sparked a lively normative debate. When turning to the international arena, new arguments for and against nudges can be raised. This essay focuses on the normative aspects of using nudges in the international arena.


2021 ◽  
Vol 11 (13) ◽  
pp. 5787
Author(s):  
Toan-Thang Vu ◽  
Thanh-Tung Vu ◽  
Van-Doanh Tran ◽  
Thanh-Dong Nguyen ◽  
Ngoc-Tam Bui

The measurement speed and measurement accuracy of a displacement measuring interferometer are key parameters. To verify these parameters, a fast and high-accuracy motion is required. However, the displacement induced by a mechanical actuator generates disadvantageous features, such as slow motion, hysteresis, distortion, and vibration. This paper proposes a new method for a nonmechanical high-speed motion using an electro-optic modulator (EOM). The method is based on the principle that all displacement measuring interferometers measure the phase change to calculate the displacement. This means that the EOM can be used to accurately generate phase change rather than a mechanical actuator. The proposed method is then validated by placing the EOM into an arm of a frequency modulation interferometer. By using two lock-in amplifiers, the phase change in an EOM and, hence, the corresponding virtual displacement could be measured by the interferometer. The measurement showed that the system could achieve a displacement at 20 kHz, a speed of 6.08 mm/s, and a displacement noise level < 100 pm//√Hz above 2 kHz. The proposed virtual displacement can be applied to determine both the measurement speed and accuracy of displacement measuring interferometers, such as homodyne interferometers, heterodyne interferometers, and frequency modulated interferometers.


2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


Sign in / Sign up

Export Citation Format

Share Document