scholarly journals Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome

2009 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Anna Meiliana ◽  
Andi Wijaya

BACKGROUND: Obesity is a growing threat to global health by virtue of its association with insulin resistance, inflammation, hypertension, and dyslipidemia, collectively known as the metabolic syndrome (MetS). The nuclear receptors PPARα and PPARγ are therapeutic targets for hypertriglyceridemia and insulin resistance, respectively, and drugs that modulate these receptors are currently in clinical use. More recent work on the PPARδ has uncovered a dual benefit for both hypertriglyceridemia and insulin resistance, highlighting the broad potential of PPARs in the treatment of metabolic disease.CONTENT: We have learned much about PPARs, the metabolic fat sensors, and the molecular pathways they regulate. Through their distinct tissue distribution and specific target gene activation, the three PPARs together control diverse aspects of fatty acid metabolism, energy balance, insulin sensitivity glucose homeostasis, inflammation, hypertension and atherosclerosis. These studies have advanced our understanding of the etiology for the MetS. Mechanisms revealed by these studies highlight the importance of emerging concepts, such as the endocrine function of adipose tissue, tissue-tissue cross-talk and lipotoxicity, in the pathogenesis of type 2 diabetes mellitus and CVD.SUMMARY: The elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three ‘lipidsensing’ (PPARα, PPARγ and PPARδ) exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bonafide therapeutic targets.KEYWORDS: Peroxisome Proliferator, Activated Receptor, Metabolic Syndrome

2006 ◽  
Vol 92 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Arya M. Sharma ◽  
Bart Staels

Abstract Context: Adipose tissue is a metabolically dynamic organ, serving as a buffer to control fatty acid flux and a regulator of endocrine function. In obese subjects, and those with type 2 diabetes or the metabolic syndrome, adipose tissue function is altered (i.e. adipocytes display morphological differences alongside aberrant endocrine and metabolic function and low-grade inflammation). Evidence Acquisition: Articles on the role of peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue of healthy individuals and those with obesity, metabolic syndrome, or type 2 diabetes were sourced using MEDLINE (1990–2006). Evidence Synthesis: Articles were assessed to provide a comprehensive overview of how PPARγ-activating ligands improve adipose tissue function, and how this links to improvements in insulin resistance and the progression to type 2 diabetes and atherosclerosis. Conclusions: PPARγ is highly expressed in adipose tissue, where its activation with thiazolidinediones alters fat topography and adipocyte phenotype and up-regulates genes involved in fatty acid metabolism and triglyceride storage. Furthermore, PPARγ activation is associated with potentially beneficial effects on the expression and secretion of a range of factors, including adiponectin, resistin, IL-6, TNFα, plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and angiotensinogen, as well as a reduction in plasma nonesterified fatty acid supply. The effects of PPARγ also extend to macrophages, where they suppress production of inflammatory mediators. As such, PPARγ activation appears to have a beneficial effect on the relationship between the macrophage and adipocyte that is distorted in obesity. Thus, PPARγ-activating ligands improve adipose tissue function and may have a role in preventing progression of insulin resistance to diabetes and endothelial dysfunction to atherosclerosis.


2005 ◽  
Vol 35 (2) ◽  
pp. 373-380 ◽  
Author(s):  
S Sookoian ◽  
S I García ◽  
P I Porto ◽  
G Dieuzeide ◽  
C D González ◽  
...  

Our objective was to search for differences in genotypes of peroxisome proliferator-activated receptor gamma (PPARγ) (Pro12 Ala) and its coactivator PGC-1α (Gly482 Ser) in adolescents harboring features of metabolic syndrome. In a population-based study, we determined medical history, anthropometric variables, biochemical measurements and arterial blood pressures of 934 high-school students of Caucasian origin. We selected 220 adolescents who had systolic or diastolic blood pressures more than the 80th or less than the 20th percentiles based on the previous single set of measurements. One hundred and seventy-five adolescents completed the study and underwent two additional blood pressure measurements on different days, as well as biochemical analysis and genotyping. We found no association between insulin resistance, body mass index (BMI) and leptin levels and PPARγ and PGC-1α genotypes. The 12 Ala PPARγ allele was associated with increased waist-to-hip ratio (WHR) and carriers seemed to have higher diastolic blood pressure and lower pulse pressure than non-carriers, particularly in the hypertensive and overweight group. Although Ser482 Ser PGC-1α homozygotes had lower WHRs than other PGC-1α genotypes, they were more frequent in the hypertensive group than in the normotensive (44.4 vs 24.5%, P<0.03), so the 482 Ser PGC-1 allele was in our population a risk factor for hypertension independently of WHR, homeostasis model assessment of insulin resistance, BMI and Pro12 Ala PPARγ variant (odds ratio=4.0, 95% confidence interval 1.5–10.6, P<0.01). Multiple regression analysis showed that age- and sex-adjusted systolic blood pressure correlated with the 482 Ser PGC-1 allele regardless of those covariates. In conclusion, the Gly482 Ser variant of the PGC-1α gene may be an independent genetic risk factor for young-onset hypertension.


2007 ◽  
Vol 41 (6) ◽  
pp. 973-983 ◽  
Author(s):  
Feng Chang ◽  
Linda A Jaber ◽  
Helen D Berlie ◽  
Mary Beth O'Connell

OBJECTIVE: To discuss the evolution of peroxisome proliferator-activated receptor (PPAR) agonists from single site to multiple subtype or partial agonists for the treatment of type 2 diabetes, dyslipidemia, obesity, and the metabolic syndrome. DATA SOURCES: Information was obtained from MEDLINE (1966-March 2007) using search terms peroxisome proliferator-activated receptor agonist, PPAR dual agonist, PPAR α/γ agonist, PPAR pan agonist, partial PPAR, and the specific compound names. Other sources included pharmaceutical companies, the Internet, and the American Diabetes Association 64th-66th Scientific Sessions abstract books. STUDY SELECTION AND DATA EXTRACTION: Animal data, abstracts, clinical trials, and review articles were reviewed and summarized. DATA SYNTHESIS: PPAR α, γ, and δ receptors play an important role in lipid metabolism, regulation of adipocyte proliferation and differentiation, and insulin sensitivity. The PPAR dual agonists were developed to combine the triglyceride lowering and high-density lipoprotein cholesterol elevation from the PPAR-α agonists (fibrates) with the insulin sensitivity improvement from the PPAR-γ agonists (thiazolidinediones). Although the dual agonists reduced hemoglobin A1C(A1C) and improved the lipid profile, adverse effects led to discontinued development. Currently, PPAR-γ agonists (GW501516 in Phase I trials), partial PPAR-γ agonists (metaglidasen in Phase II and III trials), and pan agonists (α, γ, δ netoglitazone in Phase II and III trials) with improved cell and tissue selectivity are undergoing investigation to address multiple aspects of the metabolic syndrome with a single medication. By decreasing both A1C and triglycerides, metaglidasen did improve multiple aspects of the metabolic syndrome with fewer adverse effects than compared with placebo. Metaglidasen is now being compared with pioglitazone. CONCLUSIONS: Influencing the various PPARs results in improved glucose, lipid, and weight management, with effects dependent on full or partial agonist activity at single or multiple receptors. Although the dual PPAR compounds have been associated with unacceptable toxicities, new PPAR agonist medications continue to be developed and investigated to discover a safe drug with benefits in multiple disease states.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1882 ◽  
Author(s):  
Viola J. Kosgei ◽  
David Coelho ◽  
Rosa-Maria Guéant-Rodriguez ◽  
Jean-Louis Guéant

Sirtuin1 (Sirt1) has a NAD (+) binding domain and modulates the acetylation status of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and Fork Head Box O1 transcription factor (Foxo1) according to the nutritional status. Sirt1 is decreased in obese patients and increased in weight loss. Its decreased expression explains part of the pathomechanisms of the metabolic syndrome, diabetes mellitus type 2 (DT2), cardiovascular diseases and nonalcoholic liver disease. Sirt1 plays an important role in the differentiation of adipocytes and in insulin signaling regulated by Foxo1 and phosphatidylinositol 3′-kinase (PI3K) signaling. Its overexpression attenuates inflammation and macrophage infiltration induced by a high fat diet. Its decreased expression plays a prominent role in the heart, liver and brain of rat as manifestations of fetal programming produced by deficit in vitamin B12 and folate during pregnancy and lactation through imbalanced methylation/acetylation of PGC1α and altered expression and methylation of nuclear receptors. The decreased expression of Sirt1 produced by impaired cellular availability of vitamin B12 results from endoplasmic reticulum stress through subcellular mislocalization of ELAVL1/HuR protein that shuttles Sirt1 mRNA between the nucleus and cytoplasm. Preclinical and clinical studies of Sirt1 agonists have produced contrasted results in the treatment of the metabolic syndrome. A preclinical study has produced promising results in the treatment of inherited disorders of vitamin B12 metabolism.


Sign in / Sign up

Export Citation Format

Share Document