scholarly journals Genome Editing with Crispr-Cas9 Systems: Basic Research and Clinical Applications

2017 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Recently established genome editing technologies will open new avenues for biological research and development. Human genome editing is a powerful tool which offers great scientific and therapeutic potential.CONTENT: Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPRassociated protein 9 (Cas9) technology is revolutionizing the gene function studies and possibly will give rise to an entirely new degree of therapeutics for a large range of diseases. Prompt advances in the CRISPR/Cas9 technology, as well as delivery modalities for gene therapy applications, are dismissing the barriers to the clinical translation of this technology. Many studies conducted showed promising results, but as current available technologies for evaluating off-target gene modification, several elements must be addressed to validate the safety of the CRISPR/Cas9 platform for clinical application, as the ethical implication as well.SUMMARY: The CRISPR/Cas9 system is a powerful genome editing technology with the potential to create a variety of novel therapeutics for a range of diseases, many of which are currently untreatable.KEYWORDS: genome editing, CRISPR-Cas, guideRNA, DSB, ZFNs, TALEN

2020 ◽  
Author(s):  
Ziying Hu ◽  
Chengdong Zhang ◽  
Shuai Wang ◽  
Jingjing Wei ◽  
Miaomiao Li ◽  
...  

AbstractThe compact CRISPR/Cas9 system, which can be delivered by adeno-associated virus (AAV), is a promising platform for therapeutic applications. However, current compact Cas9 nucleases have limited activity, targeting scope and specificity. Here, we identified three compact SaCas9 orthologs, Staphylococcus lugdunensis Cas9 (SlugCas9), Staphylococcus lutrae Cas9 (SlutrCas9) and Staphylococcus haemolyticus Cas9 (ShaCas9), for mammalian genome editing. Interestingly, SlugCas9 recognizes a simple NNGG PAM and displays comparable activity to SaCas9. We further generated a SlugCas9-SaCas9 chimeric nuclease, which has both high specificity and high activity. We lastly engineered SlugCas9 with mutations to generate a high fidelity variant that maintains high specificity without compromising on-target editing efficiency. Our study offers important minimal Cas9 tools that are ideal for both basic research and clinical applications.


2016 ◽  
Author(s):  
Vinod Jaskula-Ranga ◽  
Donald J. Zack

ABSTRACTCRISPR-Cas9 genome-editing is a revolutionary technology that is transforming biological research. The explosive growth and advances in CRISPR research over the last few years, coupled with the potential for clinical applications and therapeutics, is heralding a new era for genome engineering. To further support this technology platform and to provide a universal CRISPR annotation system, we introduce the grID database (http://crispr.technology), an extensive compilation of gRNA properties including sequence and variations, thermodynamic parameters, off-target analyses, and alternative PAM sites, among others. To aid in the design of optimal gRNAs, the website is integrated with other prominent databases, providing a wealth of additional resources to guide users from in silico analysis through experimental CRISPR targeting. Here, we make available all the tools, protocols, and plasmids that are needed for successful CRISPR-based genome targeting.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1608 ◽  
Author(s):  
Muhammad Naeem ◽  
Saman Majeed ◽  
Mubasher Zahir Hoque ◽  
Irshad Ahmad

Gene editing that makes target gene modification in the genome by deletion or addition has revolutionized the era of biomedicine. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 emerged as a substantial tool due to its simplicity in use, less cost and extraordinary efficiency than the conventional gene-editing tools, including zinc finger nucleases (ZFNs) and Transcription activator-like effector nucleases (TALENs). However, potential off-target activities are crucial shortcomings in the CRISPR system. Numerous types of approaches have been developed to reduce off-target effects. Here, we review several latest approaches to reduce the off-target effects, including biased or unbiased off-target detection, cytosine or adenine base editors, prime editing, dCas9, Cas9 paired nickase, ribonucleoprotein (RNP) delivery and truncated gRNAs. This review article provides extensive information to cautiously interpret off-target effects to assist the basic and clinical applications in biomedicine.


Author(s):  
Yanchun Wang ◽  
Shuli Sang ◽  
Xin Zhang ◽  
Haoxia Tao ◽  
Qing Guan ◽  
...  

A miniature CRISPR-Cas12f has been demonstrated to serve as an effective genome editing tool in gram negative bacteria as well as human cells. Here, we developed an alternative method to edit the genome of Bacillus anthracis based on the AsCas12f1 nuclease from Acidibacillus sulfuroxidans. When the htrA gene on the chromosome and the lef gene on the plasmid pXO1 were selected as targets, the CRISPR-AsCas12f1 system showed very high efficiency (100%). At the same time, a high efficiency was observed for large-fragment deletion. Our results also indicated that the length of the homologous arms of the donor DNA had a close relationship with the editing efficiency. Furthermore, a two-plasmid CRISPR-AsCas12f1 system was also constructed and combined with the endonuclease I-SceI for potential multi-gene modification. This represents a novel tool for mutant strain construction and gene function analyses in B. anthracis and other Bacillus cereus group bacteria.


2020 ◽  
Vol 2020 ◽  
pp. 1-3 ◽  
Author(s):  
Paul E. Abraham ◽  
Jessy L. Labbé ◽  
Amber A. McBride

In the last decade, the unprecedented simplicity and flexibility of the CRISPR-Cas system has made it the dominant transformative tool in gene and genome editing. However, this democratized technology is both a boon and a bane, for which we have yet to understand the full potential to investigate and rewrite genomes (also named “genome biodesign”). Rapid CRISPR advances in a range of applications in basic research, agriculture, and clinical applications pose new risks and raise several biosecurity concerns. In such a fast-moving field of research, we emphasize the importance of properly communicating the quality and accuracy of results and recommend new reporting requirements for results derived from next-generation genome engineering.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Sonja Mehlhorn ◽  
Vera S. Hunnekuhl ◽  
Sven Geibel ◽  
Ralf Nauen ◽  
Gregor Bucher

AbstractRNA interference (RNAi) has emerged as a powerful tool for knocking-down gene function in diverse taxa including arthropods for both basic biological research and application in pest control. The conservation of the RNAi mechanism in eukaryotes suggested that it should—in principle—be applicable to most arthropods. However, practical hurdles have been limiting the application in many taxa. For instance, species differ considerably with respect to efficiency of dsRNA uptake from the hemolymph or the gut. Here, we review some of the most frequently encountered technical obstacles when establishing RNAi and suggest a robust procedure for establishing this technique in insect species with special reference to pests. Finally, we present an approach to identify the most effective target genes for the potential control of agricultural and public health pests by RNAi.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Man Teng ◽  
Yongxiu Yao ◽  
Venugopal Nair ◽  
Jun Luo

In recent years, the CRISPR/Cas9-based gene-editing techniques have been well developed and applied widely in several aspects of research in the biological sciences, in many species, including humans, animals, plants, and even in viruses. Modification of the viral genome is crucial for revealing gene function, virus pathogenesis, gene therapy, genetic engineering, and vaccine development. Herein, we have provided a brief review of the different technologies for the modification of the viral genomes. Particularly, we have focused on the recently developed CRISPR/Cas9-based gene-editing system, detailing its origin, functional principles, and touching on its latest achievements in virology research and applications in vaccine development, especially in large DNA viruses of humans and animals. Future prospects of CRISPR/Cas9-based gene-editing technology in virology research, including the potential shortcomings, are also discussed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 945
Author(s):  
Christophe Delehedde ◽  
Luc Even ◽  
Patrick Midoux ◽  
Chantal Pichon ◽  
Federico Perche

Messenger RNA (mRNA) is being extensively used in gene therapy and vaccination due to its safety over DNA, in the following ways: its lack of integration risk, cytoplasmic expression, and transient expression compatible with fine regulations. However, clinical applications of mRNA are limited by its fast degradation by nucleases, and the activation of detrimental immune responses. Advances in mRNA applications, with the recent approval of COVID-19 vaccines, were fueled by optimization of the mRNA sequence and the development of mRNA delivery systems. Although delivery systems and mRNA sequence optimization have been abundantly reviewed, understanding of the intracellular processing of mRNA is mandatory to improve its applications. We will focus on lipid nanoparticles (LNPs) as they are the most advanced nanocarriers for the delivery of mRNA. Here, we will review how mRNA therapeutic potency can be affected by its interactions with cellular proteins and intracellular distribution.


Sign in / Sign up

Export Citation Format

Share Document