scholarly journals Use of hydrolysis prior to the chemical and thermomechanical modification of rice starch: alternative to traditional modification treatments

Biotecnia ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 151-160
Author(s):  
Nancy Grajeda ◽  
Mayra Márquez ◽  
Tomás Galicia García ◽  
Iván Estrada ◽  
Mónica Mendoza ◽  
...  

Rice starch isolated (NS), was subjected to chemical and thermomechanical modification with previous hydrolysis (MHS) and without previous hydrolysis (MS) to be evaluated on main starch properties as degree of substitution (DS), color, water absorption and solubility index (WAI, WSI), viscosity, texture, thermal properties (differential scanning calorimetry DSC) and structural properties (infrared-IR, Xray-Rx analysis, and relative crystallinity index-ICR). The modified starches were compared to native starch (NS). The DS obtained in both starches was within the range allowed by the FDA for its safety use as food ingredient (0.01-0.2). The modification showed an increase in WAI and WSI values, being WAI value higher in MS (4.80) and WSI value higher in MHS (32.06). The viscosity of retrogradation showed a significant decrease (P<0.05) in both starches (HMS 0.013 and MS 5.613), obtaining gels with greater stability, however, the hardness of starch gels decreased (60 %) while the adhesiveness decreased only in MS (66 %). The crystallinity index (ICR) of the modified starches increased with regard to the native starch indicating a depolymerization of the molecule due to the modification. The presence of the acetyl group in the starch molecule was observed in the signals between 1650 to 1744 cm-1 confirming the esterification. The starches showed a high potential for its application as edible coatings and as wall material for microencapsulation.

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1065
Author(s):  
Mahitha Udayakumar ◽  
Mariann Kollár ◽  
Ferenc Kristály ◽  
Máté Leskó ◽  
Tamás Szabó ◽  
...  

The role of organic solvents in governing the crystallization and morphology of semi-crystalline poly-l-lactide (PLLA) sheets was systematically investigated. Three different organic solvents; ethyl acetate (EA), o-dichlorobenzene (ODCB), and nitrobenzene (NB), with a solubility parameter analogous to PLLA and with a high capability of swelling, were chosen. It has been witnessed that the degree of crystallization and crystal morphology depends highly on the degree of swelling and evaporation rate of the solvent. Besides, the temperature and time of treatment played a significant role in the crystallization of polymers. The effect of different solvents and curing times are reflected by the measured X-ray diffraction (XRD) peaks and the differences are best shown by the unit cell size. The largest variation is observed along the c-axis, indicating shorter bonds, thus, showing better conformation after NB and ODCB treatment. The percentage of crystallinity calculated using the classical relative crystallinity index of XRD shows closer values to those calculated with differential scanning calorimetry (DSC) data, but a huge variation is observed while using the LeBail deconvolution method. The strong birefringence of polarised optical micrograph (POM) and the crystal morphology of scanning electron micrograph (SEM) also evidenced the orientation of polymer crystallites and increased crystallinity after solvent-supported heat treatment.


2012 ◽  
Vol 12 (55) ◽  
pp. 7001-7018
Author(s):  
M Emeje ◽  
◽  
R Kalita ◽  
C Isimi ◽  
A Buragohain ◽  
...  

Acha (Digitaria exilis Sta pf), also known as Findi, Hungry rice , Petit mil and White fonio, is a small seeded cereal, indigenous to West Africa, which is generally classified as millet. It grows in various parts of Nigeria, Sierra Leone, Ghana, Guinea Bissau and Benin Republic . That species is the most important of a diverse group of wild and domesticated Digitaria species that are harvested in the savannas of West Africa. It is one of the primary cereals of southern Sudan and Ethiopia in Africa. It has potential to improve human nutrition, boost food security, foster rural development and support sustainable use of lands . In this study, acha starch was subjected to modification by acetylation. The acetylated acha starch with degree of modification 0.78 had reduced foaming capacity and amylose contents. The starches have similar organoleptic properties ranging from white, gritty, non sticky to bland tastes. P hysicochemical indices investigated such as true density, bulk and tapped densities, water absorption capacity, moisture content, total and acid insoluble ash, and pH were reduced by the acetylation of acha starch. The modification resulted in a significant (P < 0.05) increase in the solubility as well as water and oil absorption capacities of the starch. Scanning electron micros copy revealed starch granules that were predominantly polygonal in shape. Acetylation did not alter the granule morphology. X -ray pattern of the native starch was A type, with similar pattern in the acetylated derivative. Fourier transform infrared spectroscopy (FTIR) results revealed a new band at 1728 cm -1. Thermogravimetry revealed 3 phase decomposition of both the native and modified starches. The a cetylation as revealed by Differential scanning calorimetry studies improved the gelation capacity of the native starch and revealed two endothermic peaks and one exothermic peak each for both starches . There was considerable reduction in the peak temperature of gelatinization (Tp) of native starch and a significant (P < 0.05) decrease in the enthalpy of gelatinization (DH) was noticed after acetylation.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 54
Author(s):  
Cecilia Anchondo-Trejo ◽  
Jaime Alonso Loya-Carrasco ◽  
Tomás Galicia-García ◽  
Iván Estrada-Moreno ◽  
Mónica Mendoza-Duarte ◽  
...  

This study aimed to obtain a third-generation snack from native rice starch (NS), rice starch modified by extrusion (MS), nopal flour (NF) and xanthan gum (XG). These raw materials were characterized by proximal analysis, pH, particle size distribution, water absorption index (WAI) and water solubility index (WSI), degree of substitution (DS), differential scanning calorimetry (DSC), rheology, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The analysis of the response variables in the nine formulations of the snack: expansion index (EI), apparent density (AD), hardness (H), luminosity (L*) and tendency to green-red (a*), was performed through a composite central design (CCD), the selected formulations were characterized by SEM. Results showed an increase in WAI, 4.69 ± 0.04, and WSI, 12.61 ± 0.10, for MS, higher than NS values due to chemical modification. According to the color analysis the NF obtained a value of 60.73 ± 0.008 in L* and −6.51 ± 0.004 in a* with green tendency. The DS value obtained was 0.09 ± 0.005, being within the FDA’s permissible range for food use. By FTIR analysis, the acetyl group was corroborated. Finally, employing microwave cooking, snacks made from NS with concentrations of NF (5%) and XG (0%) obtained the highest EI value, 4.47, as well the low Dap and D value (0.37 g/cm3, 2.25 N, respectively), corroborated by SEM analysis.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 626
Author(s):  
Siti Hajar Mohamed ◽  
Md. Sohrab Hossain ◽  
Mohamad Haafiz Mohamad Kassim ◽  
Mardiana Idayu Ahmad ◽  
Fatehah Mohd Omar ◽  
...  

There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO2 (scCO2) technology. The cellulose was extracted from scCO2-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H2SO4 hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10–30 and 2–6 nm, respectively, and an aspect ratio of 5–15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product.


Author(s):  
Abdul Baquee Ahmed ◽  
Iman Bhaduri

Objective: The objective of the present study was to chemical modification, characterization and evaluation of mucoadhesive potentiality of Assam bora rice starch as potential excipients in the sustained release drug delivery system. Methods: The starch was isolated from Assam bora rice and esterified using thioglycolic acid and characterized by Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC) and Nuclear magnetic resonance (NMR). The 10% w/v gel formulation based on modified bora rice starch loaded with irinotecan (0.6%) was prepared and evaluated for various rheological properties, ex-vivo mucoadhesion using goat intestine and in vitro drug release study in phosphate buffer pH 6.8.Results: The chemical modification was confirmed by FT-IR and NMR studies with the presence of the peak at 2626.74 cm-1 and a singlet at 2.51 respectively due to–SH group. Ex-vivo mucoadhesion studies showed 6.6 fold increases in mucoadhesion of the modified starch with compared to native starch (46.3±6.79g for native starch; 308.7±95.31g for modified starch). In vitro study showed 89.12±0.84 % of drug release after 6 h in phosphate buffer pH 6.8 and the release kinetics followed Non-Fickian diffusion.Conclusion: The modified Assam bora rice starch enhanced a mucoadhesive property of the native starch and thus, can be explored in future as a potential excipient for the sustained release mucoadhesive drug delivery system.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2419
Author(s):  
Yuheng Zhai ◽  
Jiali Xing ◽  
Xiaohu Luo ◽  
Hao Zhang ◽  
Kai Yang ◽  
...  

In this study, the effects of the addition of pectin (PEC) on the physicochemical properties and freeze-thaw stability of waxy rice starch (WRS) were investigated. As PEC content increased, the pasting viscosity and pasting temperature of WRS significantly increased (p < 0.05), whereas its breakdown value and setback value decreased. Differential scanning calorimetry showed that the addition of PEC increased the gelatinization temperature of WRS, but decreased its gelatinization enthalpy. Rheological measurements indicated that the addition of PEC did not change the shear-thinning behavior of WRS–PEC blends, and the storage modulus and loss modulus were positively correlated with PEC content. Moreover, the textural parameter of WRS decreased with the increase in PEC content. Furthermore, the addition of PEC decreased the transmittance of starch paste, but enhanced the freeze-thaw stability of WRS to some extent. These results may contribute to the development of WRS-based food products.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3855
Author(s):  
Basheer Aaliya ◽  
Kappat Valiyapeediyekkal Sunooj ◽  
Chillapalli Babu Sri Rajkumar ◽  
Muhammed Navaf ◽  
Plachikkattu Parambil Akhila ◽  
...  

Talipot starch, a non-conventional starch source with a high yield (76%) from the stem pith of talipot palm (Corypha umbraculifera L.) was subjected to three different thermal treatments (dry-heat, heat-moisture and autoclave treatments) prior to phosphorylation. Upon dual modification of starch with thermal treatments and phosphorylation, the phosphorous content and degree of crosslinking significantly increased (p ≤ 0.05) and was confirmed by the increased peak intensity of P=O and P–O–C stretching vibrations compared to phosphorylated talipot starch in the FT-IR spectrum. The highest degree of crosslinking (0.00418) was observed in the autoclave pretreated phosphorylated talipot starch sample. Thermal pretreatment remarkably changed the granule morphology by creating fissures and grooves. The amylose content and relative crystallinity of all phosphorylated talipot starches significantly decreased (p ≤ 0.05) due to crosslinking by the formation of phosphodiester bonds, reducing the swelling power of dual-modified starches. Among all modified starches, dry-heat pretreated phosphorylated starch gel showed an improved light transmittance value of 28.4%, indicating reduced retrogradation tendency. Pasting and rheological properties represented that the thermal pretreated phosphorylated starch formed stronger gels that improved thermal and shear resistance. Autoclave treatment before phosphorylation of talipot starch showed the highest resistant starch content of 48.08%.


2018 ◽  
Vol 14 (3) ◽  
Author(s):  
Xiaoyu Wen ◽  
Yuan Zhao ◽  
Joe M. Regenstein ◽  
Fengjun Wang

Abstract The structural and functional properties of slowly digestible starch (SDS) modified using pullulanase and prepared from chestnut starch were studied. The modified chestnut starches had 41.9 % SDS, which was higher than native chestnut starches (6.51 %) and cooked chestnut starches (18.6 %). The hydrolysis rate of the modified starches was 74.1 %. Scanning electron microscopy showed that the modified starch granules had a large surface area with signs of cracks and dents, and the cross-sections showed hollow internal structures. X-ray diffraction indicated that the crystallisation of the starch changed from the Cb-type to the V-type, although it retained a few C-type characteristics. Compared with native chestnut starch, the modified starches have a higher gelatinisation temperature using differential scanning calorimetry; and the texture profile analysis hardness, chewiness, cohesiveness, and gumminess of modified starch gels decreased significantly, while adhesiveness increased. When debranched using pullulanase there was a decreased solubility, swelling power, and freeze-thaw stability of the modified starches. These findings suggest that pullulanase modification changed the in vitro digestibility and crystalline structure of the modified starches.


Sign in / Sign up

Export Citation Format

Share Document