Simulation of Small-Size Space Debris Impact on the Protective Shield of a Transformable Trap

Author(s):  
P.V. Prosuntsov ◽  
A.A. Alekseev ◽  
E.O. Zherebtsova

The growth in the number of space debris, especially small-size debris undetectable by radars, urges the development of protective equipment for the crucial satellites and space station. Passive multilayer shields are the most effective means of protection. As the shields are big, it makes sense to make them out of flexible composite materials that allow them to be deployed in orbit. The article determines the loads acting on the composite load-bearing frame of the trap for small-size debris during impact. For a rational choice of the structural trap layout and optimization of its design parameters it is critical to know these loads. The hypervelocity impact of the projectile on the shield was modeled in the Altair Radioss software package using a combined model based on the Smoothed Particle Hydrodynamic (SPH) method and mesh finite elements. The simulation of the shield penetration at various locations was carried out. For each simulation case, a time history of the reaction force in the attachment point of the protective shield to the load-bearing frame was determined. It was shown that the maximum load of about 2000 N acts for around 6 milliseconds on the joint closest to the impact point for the debris projectile size of 10 mm and velocity of 2 km/s.

2019 ◽  
Vol 304 ◽  
pp. 07003
Author(s):  
Martin Schubert ◽  
Anthanasios Dafnis

In the project multiSat multifunctional composite structures for satellite application have been developed. Functions such as protection against space debris, radiation shielding and passive thermal control have been integrated into the load-bearing composite spacecraft structure by use of suitable materials and components. Sandwich panels have been studied as representative structural parts of a conventional satellite structure. Measures for increased space debris protection include the substitution of the conventional honeycomb core by 3D-printed aluminum cellular structures and the reinforcement of the sandwich panel by integration of high performance fabrics which effectively break up and catch impacting debris particles. This paper describes the development and design of multifunctional sandwich concepts with increased impact protection capability and presents the experimental results of hypervelocity impact testing with different types of CFRP sandwich panels.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
B. Aïssa ◽  
K. Tagziria ◽  
E. Haddad ◽  
W. Jamroz ◽  
J. Loiseau ◽  
...  

The presence in the space of micrometeoroids and orbital debris, particularly in the lower earth orbit, presents a continuous hazard to orbiting satellites, spacecrafts, and the international space station. Space debris includes all nonfunctional, man-made objects and fragments. As the population of debris continues to grow, the probability of collisions that could lead to potential damage will consequently increase. This work addresses a short review of the space debris “challenge” and reports on our recent results obtained on the application of self-healing composite materials on impacted composite structures used in space. Self healing materials were blends of microcapsules containing mainly various combinations of a 5-ethylidene-2-norbornene (5E2N) and dicyclopentadiene (DCPD) monomers, reacted with ruthenium Grubbs' catalyst. The self healing materials were then mixed with a resin epoxy and single-walled carbon nanotubes (SWNTs) using vacuum centrifuging technique. The obtained nanocomposites were infused into the layers of woven carbon fibers reinforced polymer (CFRP). The CFRP specimens were then subjected to hypervelocity impact conditions—prevailing in the space environment—using a home-made implosion-driven hypervelocity launcher. The different self-healing capabilities were determined and the SWNT contribution was discussed with respect to the experimental parameters.


2007 ◽  
Vol 348-349 ◽  
pp. 785-788 ◽  
Author(s):  
Gong Shun Guan ◽  
Bao Jun Pang ◽  
Yue Ha

Impacts of meteoroids and space debris on pressure vessels can have detrimental consequences for any mission. Depending on the parameters of the impacting particle and the characteristic of the vessel, the damages can range from relatively uncritical craters in the vessel’s surface to the catastrophic bursting of vessels, which besides the loss of vessel may result in severe secondary damages to surrounding components. In order to investigate failure mechanisms of thin-walled aluminum pressure vessels under hypervelocity impact of space debris, a non-powder two-stage light gas gun was used to launch Al-sphere projectiles impacting on unshielded and shielded vessels. Damage patterns and mechanisms leading to catastrophic rupture are discussed. Experimental results indicate that the impact kinetic energy of the projectile and the gas pressure in the vessel have an important effect on the damage modes of the vessel. On the one hand, high pressure gas can lead to a vessel blast. On the other hand, high pressure gas can mitigate the impact of the debris cloud on the rear wall of the vessel. Catastrophic rupture of unshielded gas-filled vessels can be avoided when the impact energy is less than a certain limit value. When the bumper is perforated, damage of shielded pressure vessel might be fatal for vessels with high gas pressure.


Author(s):  
Jérôme Limido ◽  
Christian Puillet ◽  
Jean-Paul Vila

Abstract The impact of space debris on a spacecraft can result in a catastrophic event that not only destroys the structure but can also create more space debris. The design of any spacecraft requires understanding the potential damage that can be inflicted by such an event. We consider the case of a satellite hydrazine fuel tank and the consequences of a hypervelocity impact from space debris. The purpose of this study is to better understand the mechanisms of detonation of hydrazine vapor during a hypervelocity impact on a low-pressure reservoir. The IMPETUS Afea Solver® and Explo5 software were used to perform numerical simulations of operational impact configurations (v = 14 km / s). The multi-scale calculations are performed using the Next Generation IMPETUS ɣSPH solver. A numerical assessment of the impact performance at the scale of the reactive fluid reservoir representative of a real configuration (global and local scale) was carried out. The model includes the detonation in the fluid and the transfer of the momentum to the structure which includes capturing the perforation of the structure that results from the explosive loading. A first diagram (impact velocity, diameter / perforation-explosion) was constructed on a reference tank of diameter 50cm and thickness 1mm in titanium.


Author(s):  
Joshua E. Miller

Abstract The DebriSat hypervelocity impact experiment, performed at the Arnold Engineering Development Center, is intended to update the catastrophic break-up models for modern satellites. To this end, the DebrisSat was built with many modern materials including structural panels of carbon-fiber, reinforced-polymer (CFRP). Subsequent to the experiment, fragments of the DebrisSat have been extracted from porous, catcher panels used to gather the debris from the impact event. Thus far, one of the key observations from the collected fragments is that CFRP represents a large fraction of the fragments and that these fragments tend to be thin, flake-like structures or long, needle-like structures; whereas, debris with nearly equal dimensions is less prevalent. As current ballistic limit models are all developed based upon spherical impacting particles, the experiment has pointed to a missing component in the current approach that must be considered. To begin to understand the implications of this observation, simulations have been performed using cylindrical structures at a representative orbital speed into an externally-insulated, double-wall shield that is representative of shielding on the current International Space Station crew transport vehicle, the Soyuz. These simulations have been performed for normal impacts to the surface with three different impact angles-of-attack to capture the effect on the shield performance. This paper documents the simulated shield and the models developed to study the effect of fragments and derives the critical characteristics of CFRP impacting particles for the selected shield. This work gives a deployable form of a critical, non-spherical projectile ballistic limit equation for evaluating non-spherical space debris for orbital debris environment modeling.


Author(s):  
Igor Ye. Telitchev

The present paper is devoted to analysis of burst conditions of thin-walled cylindrical pressure vessels subjected to hypervelocity impact of space debris particles. Two types of gas-filled pressure vessels onboard the International Space Station were considered: inhabited or laboratory pressurized modules and onboard system vessels with a gas under high pressure. The central concern of this study is to determine the border between simple perforation and catastrophic fracture of gas-filled pressure vessels of both types under hypervelocity impact. Non-linear fracture mechanics techniques were used to analyze and predict whether a vessel perforation will lead to mere leakage of gas, or whether unstable crack propagation will occur that could lead to catastrophic fracture of the vessel. Damage patterns and mechanisms leading to unstable crack growth are discussed. A model of fracture of an impact damaged pressure vessel is presented. A developed model was successfully applied to the simulation of experimental results obtained at Ernst-Mach-Institute (Germany).


1992 ◽  
Vol 114 (3) ◽  
pp. 135-141
Author(s):  
Jennifer L. Rhatigan ◽  
Eric L. Christiansen ◽  
Michael L. Fleming

A great deal of experimentation and analysis has been performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration has been found to depend upon mission-specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density, and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. This paper describes the approach developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to Space Station Freedom requirements over the expected lifetime.


1992 ◽  
Vol 114 (3) ◽  
pp. 142-149 ◽  
Author(s):  
Jennifer L. Rhatigan ◽  
Eric L. Christiansen ◽  
Michael L. Fleming

Recent progress to better understand the environmental threat of micrometeoroid and space debris to the solar dynamic radiator for the Space Station Freedom power system is reported. The objective was to define a design which would perform to survivability requirements over the expected lifetime of the radiator. A previous paper described the approach developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses were presented to quantify the solar dynamic radiator survivability. These included the type of particle and particle population expected to defeat the radiator bumpering. Results of preliminary hypervelocity impact (HVI) testing performed on radiator panel samples were also presented. This paper presents results of a more extensive test program undertaken to further define the response of the solar dynamic radiator to HVI. Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of particle size, particle density, impact angle, and impact velocity. Target parameters were also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define more rigorously the solar dynamic radiator reliability with respect to HVI. Test data, analyses, and survivability results are presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xilai Li ◽  
Dengke Yu ◽  
Zhengliang Li

This paper analyzes the influences of important structural design parameters on the wind-induced response of cross-rope suspension tower-line. A finite element model of cross-rope suspension tower-line system is established, and the dynamic time-history analysis with harmonic wave superposition method is conducted. The two important structural design parameters such as initial guy pretension and sag-span ratio of suspension-rope are studied, as well as their influences on the three wind-induced vibration responses such as tensile force on guys, the reaction force on mast supports, and the along-wind displacement of the mast top; the results show that the value of sag-span ratio of suspension-rope should not be less than 1/9 and the value of guy pretension should be less than 30% of its design bearing capacity. On this occasion, the tension in guys and compression in masts would be maintained in smaller values, which can lead to a much more reasonable structure.


Sign in / Sign up

Export Citation Format

Share Document