Understanding the development of the gut microbiome in pigs: an overview

2022 ◽  
pp. 179-202
Author(s):  
Marion Borey ◽  
◽  
Jordi Estelle ◽  
Claire Rogel-Gaillard ◽  
◽  
...  

Living organisms continuously and intimately interact with commensal microbial communities referred to as microbiota and microbiomes. These complex ecosystems provide their hosts with vital services. The gut microbiome develops and diversifies after birth in pigs, as in all mammals. The diversification dynamics follows the host development early in life, reaches an initial level of richness and stabilization before 60 days of age, and continues to mature but at a much lower rate while ageing and adapting to environmental changes. There is a wide variation in microbiome composition at individual and group levels, due to a combination of many factors including host genetics, environmental factors, feed and feed additives, and farm practices. Although the gut microbiome displays region-specific composition along the digestive tract, with likely sequential, complementary biological functionalities, the fecal microbiome is often considered as a good surrogate and provides many of the associations identified with host phenotypes.

2019 ◽  
Author(s):  
Petar Scepanovic ◽  
Flavia Hodel ◽  
Stanislas Mondot ◽  
Valentin Partula ◽  
Allyson Byrd ◽  
...  

ABSTRACTBackgroundThe gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1,000 healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified across five decades of life (age 20 – 69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition.ResultsAmong 110 demographic, clinical and environmental factors, 11 were identified as significantly correlated with α-diversity, ß-diversity or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between >5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics.ConclusionIn a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1113
Author(s):  
Eun-Tae Kim ◽  
Sang-Jin Lee ◽  
Tae-Yong Kim ◽  
Hyo-Gun Lee ◽  
Rahman M. Atikur ◽  
...  

Microbiota plays a critical role in the overall growth performance and health status of dairy cows, especially during their early life. Several studies have reported that fecal microbiome of neonatal calves is shifted by various factors such as diarrhea, antibiotic treatment, or environmental changes. Despite the importance of gut microbiome, a lack of knowledge regarding the composition and functions of microbiota impedes the development of new strategies for improving growth performance and disease resistance during the neonatal calf period. In this study, we utilized next-generation sequencing to monitor the time-dependent dynamics of the gut microbiota of dairy calves before weaning (1–8 weeks of age) and further investigated the microbiome changes caused by diarrhea. Metagenomic analysis revealed that continuous changes, including increasing gut microbiome diversity, occurred from 1 to 5 weeks of age. However, the composition and diversity of the fecal microbiome did not change after 6 weeks of age. The most prominent changes in the fecal microbiome composition caused by aging at family level were a decreased abundance of Bacteroidaceae and Enterobacteriaceae and an increased abundance of Prevotellaceae. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis indicated that the abundance of microbial genes associated with various metabolic pathways changed with aging. All calves with diarrhea symptoms showed drastic microbiome changes and about a week later returned to the microbiome of pre-diarrheal stage regardless of age. At phylum level, abundance of Bacteroidetes was decreased (p = 0.09) and that of Proteobacteria increased (p = 0.07) during diarrhea. PICRUSt analysis indicated that microbial metabolism-related genes, such as starch and sucrose metabolism, sphingolipid metabolism, alanine aspartate, and glutamate metabolism were significantly altered in diarrheal calves. Together, these results highlight the important implications of gut microbiota in gut metabolism and health status of neonatal dairy calves.


Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Petar Scepanovic ◽  
◽  
Flavia Hodel ◽  
Stanislas Mondot ◽  
Valentin Partula ◽  
...  

Abstract Background The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1000 healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified across five decades of life (age 20–69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition. Results Among 110 demographic, clinical, and environmental factors, 11 were identified as significantly correlated with α-diversity, ß-diversity, or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between > 5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics. Conclusion In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals. Trial registration ClinicalTrials.gov identifier NCT01699893


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Judith Mogouong ◽  
Philippe Constant ◽  
Pierre Legendre ◽  
Claude Guertin

AbstractThe microbiome composition of living organisms is closely linked to essential functions determining the fitness of the host for thriving and adapting to a particular ecosystem. Although multiple factors, including the developmental stage, the diet, and host-microbe coevolution have been reported to drive compositional changes in the microbiome structures, very few attempts have been made to disentangle their various contributions in a global approach. Here, we focus on the emerald ash borer (EAB), an herbivorous pest and a real threat to North American ash tree species, to explore the responses of the adult EAB gut microbiome to ash leaf properties, and to identify potential predictors of EAB microbial variations. The relative contributions of specific host plant properties, namely bacterial and fungal communities on leaves, phytochemical composition, and the geographical coordinates of the sampling sites, to the EAB gut microbial community was examined by canonical analyses. The composition of the phyllosphere microbiome appeared to be a strong predictor of the microbial community structure in EAB guts, explaining 53 and 48% of the variation in fungi and bacteria, respectively. This study suggests a potential covariation of the microorganisms associated with food sources and the insect gut microbiome.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1181
Author(s):  
Alessandro Maglione ◽  
Miriam Zuccalà ◽  
Martina Tosi ◽  
Marinella Clerico ◽  
Simona Rolla

As a complex disease, Multiple Sclerosis (MS)’s etiology is determined by both genetic and environmental factors. In the last decade, the gut microbiome has emerged as an important environmental factor, but its interaction with host genetics is still unknown. In this review, we focus on these dual aspects of MS pathogenesis: we describe the current knowledge on genetic factors related to MS, based on genome-wide association studies, and then illustrate the interactions between the immune system, gut microbiome and central nervous system in MS, summarizing the evidence available from Experimental Autoimmune Encephalomyelitis mouse models and studies in patients. Finally, as the understanding of influence of host genetics on the gut microbiome composition in MS is in its infancy, we explore this issue based on the evidence currently available from other autoimmune diseases that share with MS the interplay of genetic with environmental factors (Inflammatory Bowel Disease, Rheumatoid Arthritis and Systemic Lupus Erythematosus), and discuss avenues for future research.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1630 ◽  
Author(s):  
Daphne M. Rodriguez ◽  
Abby D. Benninghoff ◽  
Niklas D.J. Aardema ◽  
Sumira Phatak ◽  
Korry J. Hintze

The Western dietary pattern can alter the gut microbiome and cause obesity and metabolic disorders. To examine the interactions between diet, the microbiome, and obesity, we transplanted gut microbiota from lean or obese human donors into mice fed one of three diets for 22 weeks: (1) a control AIN93G diet; (2) the total Western diet (TWD), which mimics the American diet; or (3) a 45% high-fat diet-induced obesity (DIO) diet. We hypothesized that a fecal microbiome transfer (FMT) from obese donors would lead to an obese phenotype and aberrant glucose metabolism in recipient mice that would be exacerbated by consumption of the TWD or DIO diets. Prior to the FMT, the native microbiome was depleted using an established broad-spectrum antibiotic protocol. Interestingly, the human donor body type microbiome did not significantly affect final body weight or body composition in mice fed any of the experimental diets. Beta diversity analysis and linear discriminant analysis with effect size (LEfSe) showed that mice that received an FMT from obese donors had a significantly different microbiome compared to mice that received an FMT from lean donors. However, after 22 weeks, diet influenced the microbiome composition irrespective of donor body type, suggesting that diet is a key variable in the shaping of the gut microbiome after FMT.


mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Lauren E. Fuess ◽  
Stijn den Haan ◽  
Fei Ling ◽  
Jesse N. Weber ◽  
Natalie C. Steinel ◽  
...  

ABSTRACT Commensal microbial communities have immense effects on their vertebrate hosts, contributing to a number of physiological functions, as well as host fitness. In particular, host immunity is strongly linked to microbiota composition through poorly understood bi-directional links. Gene expression may be a potential mediator of these links between microbial communities and host function. However, few studies have investigated connections between microbiota composition and expression of host immune genes in complex systems. Here, we leverage a large study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined stickleback) to document correlations between gene expression and microbiome composition. First, we examined correlations between microbiome alpha diversity and gene expression. Our results demonstrate robust positive associations between microbial alpha diversity and expression of host immune genes. Next, we examined correlations between host gene expression and abundance of microbial taxa. We identified 15 microbial families that were highly correlated with host gene expression. These families were all tightly correlated with host expression of immune genes and processes, falling into one of three categories—those positively correlated, negatively correlated, and neutrally related to immune processes. Furthermore, we highlight several important immune processes that are commonly associated with the abundance of these taxa, including both macrophage and B cell functions. Further functional characterization of microbial taxa will help disentangle the mechanisms of the correlations described here. In sum, our study supports prevailing hypotheses of intimate links between host immunity and gut microbiome composition. IMPORTANCE Here, we document associations between host gene expression and gut microbiome composition in a nonmammalian vertebrate species. We highlight associations between expression of immune genes and both microbiome diversity and abundance of specific microbial taxa. These findings support other findings from model systems which have suggested that gut microbiome composition and host immunity are intimately linked. Furthermore, we demonstrate that these correlations are truly systemic; the gene expression detailed here was collected from an important fish immune organ (the head kidney) that is anatomically distant from the gut. This emphasizes the systemic impact of connections between gut microbiota and host immune function. Our work is a significant advancement in the understanding of immune-microbiome links in nonmodel, natural systems.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Steven A. Frese ◽  
Andra A. Hutton ◽  
Lindsey N. Contreras ◽  
Claire A. Shaw ◽  
Michelle C. Palumbo ◽  
...  

ABSTRACT The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function. Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function.


Author(s):  
Alexander Kurilshikov ◽  
Carolina Medina-Gomez ◽  
Rodrigo Bacigalupe ◽  
Djawad Radjabzadeh ◽  
Jun Wang ◽  
...  

AbstractTo study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed whole-genome genotypes and 16S fecal microbiome data from 18,473 individuals (25 cohorts). Microbial composition showed high variability across cohorts: we detected only 9 out of 410 genera in more than 95% of the samples. A genome-wide association study (GWAS) of host genetic variation in relation to microbial taxa identified 30 loci affecting microbome taxa at a genome-wide significant (P<5×10-8) threshold. Just one locus, the lactase (LCT) gene region, reached study-wide significance (GWAS signal P=8.6×10−21); it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.94×10−10<P<5×10−8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization analyses identified enrichment of microbiome trait loci SNPs in the metabolic, nutrition and environment domains and indicated food preferences and diseases as mediators of genetic effects.


Sign in / Sign up

Export Citation Format

Share Document